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Why on-shell renormalisation constants?

current and future experiments

high accuracy for quark masses needed

o Br(B — Xev) xx m3

@ pole mass can only be extracted with ambiguity of order Agcp
~~ Renormalons

o trade the pole-mass in for MS-mass: still large perturbative
corrections

@ ~> use “short distance” mass definitions:

@ potential subtracted mass [Beneke '98]
@ 1S mass [Hoang, Teubner '98]
@ kinetic mass [Bigi et al. '97]
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Potential Subtracted Mass

perturbative series of Coulomb potential is better behaved in
momentum space than in coordinate space

~> use cut-off for Fourier transformation

subtracted potential

V(r,ug) = V(r)+26m(uy)

imuy) = ~5 | 5 V@

~> potential subtracted mass

mps(tiy) = Mpole — 0m(fiy)
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Relation between PS and MS mass

mps(if) = Mpole — 0m(piy)

_ ({”PS'E) (i) — om(uy)

m(m)

= m(m) [1 L o) o, < ’”(Lfn)> +0(a )]

Wpole

: .M,
@ large perturbative corrections in —£** cancel with dm ()
~~ precise determination of MS mass

o relation between pole and MS mass is necessary
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@ Renormalization constants

© Scalar Integrals

© Results
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Renormalized propagator

—iZ95 ¢-MZ —j

P = et T @My -1,

with
mgo = 29° My, o =1/29%%

¥ (g,mq) = My T1(q?, My) + (f — My) T(q?, My)

o 795 is IR-finite, gauge-invariant quantity, Z9° is not

Mass relation

@ no e—poles left
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Computation of the renormalization constants

@ introduce 4-vector Q with ¢ = Q(1 +t) and Q? = Mq2

Projector

i {Q:T?qz(q, Mq)} _

9
21(1\45,1\411)+<2Mq2—a 2zl(q2,Mq)( . 2+22(Mq2,Mq)>t
— q q°=Mg

7951

m

(28%) -1

@ Renormalisation: insertion of mass counterterms
2 . .
oc My¥1(Mg, M) in lower order diagrams
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On-Shell Quark Mass and Wave Function Renormalisation
@ necessary input for (multi-) loop calculations
@ Z,, determined from on-shell self-energy diagrams

@ 7, determined from derivative of self-energies
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~ subset of on-shell self energy diagrams
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Dimensional Regularisation['t Hooft, Veltman '72]
@ complex number of dimensions: d = 4 — 2¢

@ regulates UV and IR divergencies

Zm and Zy are known up to O (ag’) in massless approx.

O (as): Zp, [Tarrach '80]
O (a3):
° Zm [Gray, Broadhurst, Grafe, Schilcher '90]
@ Z,, and Z,  [Broadhurst, Gray, Schilcher '91]
° (9( )
o Zy,: semi-numerical [Chetyrkin, Steinhauser '99, '00],
estimation of charm—mass effects [Hoang '00]
@ Z,, and Z5: analytical [Melnikov, van Ritbergen '00]

s independent confirmation of analytical results
[Marquard, Mihaila, Piclum, Steinhauser '07]



Renormalization constants

[o]e]e]e] ]

Diagrams at O (a2) with nonzero light quark mass
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@ great challenge: two—scale three loop diagrams
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Generic Topologies

o after taking trace: scalar integrals

@ 7, includes derivative of self-energy and is gauge-dependent
~» up to 5 dots and 5 powers of scalar products needed

Integration By Parts

d
/d3d€172,3wv“1(q2 = qu,Mq,Mf) = 0

@ use relations to reduce integrals to master integrals
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Feynman diagrams
@ generated with QGRAF [Nogueira '91]

@ various topologies are identified with
q2e and exp [Harlander '97, Seidensticker '99]

Laporta Algorithm [Laporta '96]
@ Crusher: Implementation written in C++ [Marquard, DS '06]
@ uses GiNaC for simple manipulations

o coefficient simplification done with Fermat
~~ interface from [Tentyukov '06]

@ automated generation of the IBP identities
@ complete symmetrization of the diagrams

@ use of multiprocessor environment
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Calculation of Master Integrals

@ two independent methods used

Mellin—-Barnes

1 1 1 1 MY\?
&) (K))‘ 10 )2—/st (—?> F(—=s)F(A+s)

@ trade massive propagator for massless one

@ simplify Feynman integral representations

~+ at most 4-dimensional representation for complicated integrals
(calculated with MB.m [Czakon '05])

@ partially checked with AMBRE [Gluza, Kajda, Riemann '07]
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Differential Equation Method

_ 2(d — 3) T 4(d—4) N
M2(z—1)z(z+1) Nt (d—=3)(z—1)z(z+1) Ny

+...

@ homogenious part trivial
@ solution expressable in terms of “standard” HPL's
@ in principle up to any desired order in ¢

@ initial conditions known from n,,, = 0 calculation
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2Zeta(3)

€

+%7r2HPL({O}, z)z? — 12HPL({0, 0}, 2)22 + 16HPL({0, 0,0}, z)z>
—72(z — 2)z + 1—307r2HPL({—2}, z) — 2”2 (22 — 1) HPL({~1}, 2)

_%WQ (22 = 1) HPL({1},2) + §W2HPL({2}, z) — 8HPL({-3,0},2)

—4 (2% + 1) HPL({-2,0},2) + 2(2 + 1)(3z — 1)HPL({-1,0}, 2)

4 (=62% + 42 +2) HPL({1,0},2) + 4 (2 + 1) HPL({2, 0}, 2) + 8HPL({3,0}, 2)
+16HPL({-2,0,0}, z) + 8HPL({-2,1,0}, 2) + (8 — 822) HPL({~1,0,0},2)

+ (4 — 42°) HPL({~1,1,0}, 2) + (4 — 42®) HPL({1, 1,0}, 2)

48 (22 — 1) HPL({1,0,0}, 2) 4 8HPL({2, —1,0}, z) — 16HPL({2,0,0}, 2)

4

+6 (22 —2) ¢(3) 20

@ Simplification and numerical evaluation done with HPL.m
[Maitre '05,"07]
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no analytic solution for 2 topologies

d REP RN

= /—// \\\\\\\ =

LA (2t 4 4
M2\z z+1 2z-1 2z+1 z—1 e

@ “wrong” pole structure ~» no transformation found
@ analytic results up to ¢!

@ Mellin—Barnes: 1-dimensional sums left after z—expansion

~~ sufficient numerical precision for phenomenology
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Mass relation

Mq(l) _ g, as(u) 50 4 (Ots(u))2 5.2
My " T "

=
Zm (1) = Ziﬁ =

+(as(“)) 649 + 0 (af)

™

52’5721,) = C%;* + CFCA ZFA + CFTFTLlZ =+ CFTFnhz + CFTFTLmZF]M
628 = C3 2EFF 4 CoCa 2EFA + CrCh 2EA4
+ CrTrny (CF Z,I:LFL +Ca z,I:LAL + Tpny zTI:LLL + Trnp zTI:LHL + Tpnm 27[;“\'7 ”)

+ CrTrny (CF Zf,;FH +Cy Z,,I;—;AH + Trnp Z,,I:ZHH + Tprnm ny;f\]H)

FFM FAM FMM
+ CFTan (CF Zm + CA Zm +Trnm Zm )

@ z!, containing factor n,, depend on ratio of OS-quark masses
zZ = Mf/M
o all 2}, depend on Inpu/M,
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@ preliminary results at © = M,

@ known results at z = 0,1 reproduced

FAM

@ 2 " enhanced by color factor



Conclusion and Outlook

o last missing piece of 3—loop MS-on-shell relation calculated

@ Laporta—implementation capable of dealing with bigger
problems

@ combination of analytical and numerical results sufficient for
phenomenological treatment

@ results for Z> have to be worked out

@ mass shift in b—mass determination
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