Study of the GEM TPC PrePrototype

Akimasa Ishikawa 石川明正 (Saga University) 佐賀大学

LC-TPC Asia group

Japan

Saga: A. Aoza, T. Higashi, A. Sugiyama, H. Tsuji Kinki: Y. Kato, K, Hiramatsu, T. Yazu Kogakuin: T. Watanabe TUAT: O. Nitoh, H. Ohta, K. Sakai, H. Bito KEK: K. Fujii, K. Kobayashi, H. Kuroiwa, T. Matsuda, R. Yonamine China Tsinghua: Y. Gao, Y. Li, J. Li, L. Cao, Z. Yang Philippines MSU: A.Bacala, C. J. Gooc, R. Reserva, D. Arogancia

2007 Jun 1

TPC Large Prototype Test (LP1)

- LC-TPC group will have a beam test for TPC Large Prototype (LP1) at DESY
 - To measure the performance and extrapolate it to real TPC
 - To clarify unknown problems
- With
 - multi MPGD panels (GEM, MicroMEGAS)
 - same field cage, endplate, readout electronics and analysis code for GEM and MicroMEGAS
 - PCMAG from KEK supplies 1 T magnetic field

- Asia Group will prepare GEM panels for the test
- In this talk, I will present a study of a GEM TPC Prototype for the LP1 Test (we call it as "PrePrototype").

PrePrototype Test

- Purposes of the PrePrototype test
 - Mechanical study
 - Frame gluing to GEM
 - GEM mount system onto PC board (flatness, dead space)
 - Panel mount system onto Endplate
 - Design study
 - Size of pads (related to signal width and size of readout connector)
 - Readout connector
 - PC board design, line pattern (cross talk)
 - HV line
 - GEM study
 - Segmentation and boundary
 - Gain uniformity
- The test does NOT cover
 - Uniformity of Pad Response Function (checked by Laser test)
 - Gating (important for GEM, not for MicroMEGAS??)

Structure of the PrePrototype

100um thick Double GEM

GEM

- 100um Liquid Crystal Polymer (LCP) insulator btw 5um Cupper electrodes by Scienergy Co..
 - 70um hole diameter, 140um pitch
 - cylindrical hole shape (CERN GEM : biconical)
 - size of active area ~ $20x11cm^2$ ($\phi = 9.3deg$, r=128~139cm)
 - electrodes divided into two to keep the stored energy (capacitance) small enough

GEM Stretcher for Frame Gluing

put pins in the holes to adjust GEM foil and support frame

bolts to stretch GEM by screwing

Frame Gluing

frame gluing with the stretcher

∕ bolt

Frame gluing is established. No problems found.

3 GEMs/day is possible (Limited by adhesive induration time).

Readout PC board

HV supply electrode

HV connector/nut adhesion

- Two methods are tried.
 - gluing and soldering

Pad plane side

Readout side

Soldering

Soldering is much stronger than gluing. Further, dotite produces threads. \rightarrow Soldering should be used for LP1 (thermal capacity should be small)

Readout Connector

smaller is better for small pads (1.1x5.5mm²)

- connector by JAE
 - size ~15x4mm²
 - 20ch x2 = 40ch
 - signal 32ch, ground 8ch
- easy disconnection. So support system is needed
 - readout preamp/flush ADCs boards are directly connected for LP1
 - so far, we do not have alternatives

GEM Mount Post

- GEM panels are mounted by screwing the bolts attached to the support frame
 - GEM panels are detachable
 - no gluing btw GEM support frame and PCB

Support/Mount Frame for PCB

- 1cm thick Aluminum Frame with
- Glued with epoxy adhesive
- Alignment posts should be used for LP1
 - we aligned by hand this time
- Need to reduce material for real TPC

Gas Container

A panel is mounted to gas container
 processing has done with N₂

Measurement of Gain Uniformity over Panel

- We measure the gain uniformity over panel.
 - Data was taken just before I left Japan to come to DESY.
 - The result is very very preliminary
- Setup
 - Gas : Ar-Isobutane 90:10
 - HV : VGEM=410V, Ed=100V/cm, Et=2050V/cm, Ei=3075V/cm

Measurement of the Energy Distribution

- □ Signal spread is about ~550um
 - \rightarrow 3~4 Pads are fired in same pad layer.
 - \rightarrow charge is sometimes shared by 2 layers.
- We have 2 postamps with 32ch (31 alive ch, 1 dead ch)
 - trigger 18, 19, 25 and 26ch
 - Require charge sharing btw two layers (ex. (25||26)&&(11||12||13))
 - Sum charge for each layer, in total 10 pads' charge.

Measured Positions

- 28 positions described below
- neighbor channels are connected to ground to avoid field distortion due to charge-up.

Charge Distribution

- Both main and escape peaks can be seen
- □ Signal width is ~0.5 pad(550um) in sigma as _____

- No charge sharing for positions 3, 10, 18, 21 and 26.
 - due to GEM electrode boundary?
 - Charge sharing is not required for these positions.

Result

- Gain uniformity is not so good
 - field shaping?
 - grounding for all unused channels.
 - field shaper for side of the panel.
 - field shaping electrodes for support frame.
- Very very preliminary result. we need further investigation.

normalized to

this position

Summary

- We have made a GEM TPC PrePrototype.
- We found (minor) problems for LP1 panel construction.
 - Readout connector is easily disconnected
 - support system should be considered
 - GEM panel mounting : detachable or not (glued to PCB)
 need further discussions
 - alignment of support frame for PCB
 - alignment posts should be added
- We measure the Uniformity over panels
 - uniformity is not good
 - field shaping is not good?
 - we need further investigation