LET Studies at FNAL

N.Solyak
for Fermilab Acc. Phys. Group

Update on I LC ML Lattice Design

Alexander Valishev, Nikolay Solyak for the FNAL LET group

May 23, 2007

Outline

- Basic layout
- Matching
- Lattice Repository
- Summary and Outlook

Lattice Design

- Defined by cryo segmentation
- Versions of segmentation
» 9-8-9 scheme, Dec 282006
- Basic segmentations:

Main Linac

		warm	16		warm drift	14		undulator region			$\begin{gathered} 13 \text { strings } \\ \hline 2 \text { short strin! } \end{gathered}$		warm	16	strings	$\begin{array}{\|c\|} \hline \text { for } \\ \hline 3.50 \% \\ \hline \end{array}$
10	strings	drift		strings			strings	warm	supercon	warm			drift			
	RF units	space		RF units	space		RF units	space	magnets	space	58 RF units		space	64 RF units		more
1545.7		7.652	2471.7		7.652	2163.0		600	290.0	367	2241.4		7.652	2471.7		368.6
1549.6			2479.3			3056.9						2612.3		247	5.5	400.0

Lattice Revision History

Date	Cav/ CM	Q/ CM	Comments
$1 / 06$	12	$1 / 2$	USColdLC by PT, TESLA-like, straight
$3 / 06$	8	$1 / 4$	PT + curved
$5 / 06$	8	$1 / 3$	BCD-like, simple periodic lattice
$5 / 06$	8	$1 / 3$	Added cryo boxes and warm straights
$6 / 06$	8	$1 / 3$	May 31 (ver. 3) cryo layout
$9 / 06$	8	$1 / 3$	SBEND version *)
$10 / 06$	8	$1 / 3$	M.Woodley RTML-ML-BDS **)
$1 / 07$	8	$1 / 3$	"8-8-8" Nov 21. cryo layout (ver. 4)
$2 / 07$	$9-8-9$	$1 / 3$	$" 9-8-9 "$ Dec 28. cryo layout
$4 / 07$	$9-8-9$	$1 / 3$	"9-8-9" ML re-matched to BDS

*) http://tdserver1.fnal.gov/project/ILC/ARCHIVE/ILC-ML-SbendCurvature.zip
**) http://www.slac.stanford.edu/~mdw/ILC/2006e/

ILC 9-8-9 Lattice β-functions

ILC e-Main Linac [A. Valishev] 9-8-9-28dec06 cryo config.

989-28dec06

ILC e-Main Linac [A. Valishev] 9-8-9-28dec06 cryo config. Windows version $8.51 / 15 \mathrm{~s}$

989-28dec06-NoUND

ILC
 9-8-9 lattice Orbit

ILC e-Main Linac [A. Valishev] 9-8-9-28dec06 cryo config

989-28dec06

ILC
 9-8-9 lattice Dispersion

Lattice Repository

- Accelerator Division of Fermilab supports centralized lattice repository
» Controlled write access
» Revision history
- I LC ML lattices have been placed into the repository https:/ / lattices.fnal.gov/
» Read-only->Lines->ILC Linac->unofficial->valishev->
- I LC2006e-989-28dec06
- I LC2006e-989-28dec06-NoUND

Summary

- ML lattice based on 9-8-9 (28dec06) cryogenic layout has been developed
- Two versions of decks exist
» Main Linac with Undulator section
» Main Linac without Undulator section
- Kick angles of Dispersion matching orbit bumps were kept below 5e-6 to minimize SR power
- Lattices available in FNAL Lattice Repository httos:/ / lattices.fnal.gov/

TODO

- Placement and Strategy of emittance measurement in ML
» Laser Wire in warm sections
- SR radiation issues in energy upgrade (next slide)

Synchrotron Radiation in a Single Corrector

$$
\begin{aligned}
& B=\frac{E}{0.3} \frac{\alpha}{L} \quad U_{S R}=8.85 \times 10^{4} E^{4} \frac{\alpha^{2}}{L} \\
& P_{S R}=U_{S R} \cdot I a v \\
& \mathrm{E} \text { - particle energy [GeV] } \\
& \alpha \text { - bending angle } \\
& \mathrm{L} \text { - corrector length [m] } \\
& \text { B - corrector field [T] } \\
& \text { UsR - particle energy loss [eV] } \\
& \mathrm{L}=0.335 \text { (separate dipole corrector) } \\
& \text { lav - average beam current [A] } \\
& \text { PSR - average radiated power [W] }
\end{aligned}
$$

	E=250 GeV		E=500 GeV	
α	USR [keV]	PSR [W]	USR [keV]	PSR [W]
$5 e-6 *$	26	1.1	413	18
$1 e-5$	100	4.5	1650	72
$5 e-5$	2600	110	41280	1800

* Nominal Earth curvature steering angle

ILC
 Bumps Studies for Static Tuning

- Local Bumps
> Optimize Bumps Position
» Number of bumps ?
» Combination of Dispersion and Wake bumps
- Global Bumps - in progress
> Number of Global Knobs (Bumps)

ILC Short Lattice: Only 1 dispersion bump

Short Lattice: Only 1 Wake bump

Full Lattice

Dynamic Simulations

Ground Motion \&
Adaptive Alignment

Kirti Ranjan, Nikolay Solyak, Valentin I vanov

Adaptive Alignment (AA) - Basic Principle

Ground Motion in Lucretia

- AA in Perfect Lattice
$>$ One-to-one in Perfect Lattice
> Effect of BPM resolution on AA

\checkmark Proposed by V.Balakin in 1991 for VLEPP project
\checkmark "local" method: BPM readings $\left(A_{j}\right)$ of only 3 (or 5 or so on) neighboring quads are used to determine the necessary shifting of the central quad (Δy_{i}).

$$
\Delta \mathbf{y}_{\mathbf{i}}=\operatorname{Gain} * 1 / 3 *\left[\mathbf{A}_{\mathbf{i}+1}+\mathbf{A}_{\mathbf{i}-1}-\mathbf{A}_{\mathbf{i}} *\left\{\mathbf{2}+\mathbf{K}_{\mathrm{i}} \cdot \mathbf{L} \cdot\left(\mathbf{1}-\frac{\Delta \mathbb{E}}{2 \mathbb{E}}\right)\right\}\right]
$$

conv: Speed of convergence of algorithm
A_{j} : BPM reading of the central quad and so on
K_{i} : Inverse of quad focusing length
$L \quad$: Distance between successive quads (assuming same distance b/w quads)
ΔE : Energy gain between successive quads
E : Beam Energy at central quad
\checkmark The procedure is iteratively repeated
quad \& New position of BPM:

$$
y_{i}=y_{i}+\Delta y_{i}
$$

AA and 121 dynamic tuning: Preliminary results (Feb 2007)

- Short Lattice: 50 FODO (Daresbury LET meeting, J an. 2007)
» AA keeps the emittance growth even for model C under control for ~ 10 days
» DF Steered and perfect linac are similar. DFS settings is used as reference.
» Sensitive to BPM resolution, averaging along bunches in train will help
» Emiitance growth is higher after 121 steering
- 30 different GM seeds (Model C)
- Case2: GM of 10 hrs . in step of $1 / 2 \mathrm{hr}$.
- When AA incorporated: AA of 100 iterations after every $1 / 2 \mathrm{hr}$. (conv. $=0.2$)

Y-emittance (nm) @ Linac exit vs. time ($1 / 2 \mathrm{hrs}$.)
Mean of 30 seeds

In half an hour of GM, emittance dilution increases by as much as $\sim 5 \mathrm{~nm}$ b/w the subsequent $A A$ iterations, which implies that AA will have to be done at this order or better!

】LCAdaptive Alignment: Ground Motion Model : C

Time: 10 days in step of 2 hr. 0.6*0.33 (AA convergence) @100 AA steps

121: GM Model : C

Time: 10 days in step of 1 hrs; gain $=0.3$ (121 gain) @ 20 steps

Ycor setting from the previous hour considered during the new iteration

Ycor setting from the previous hour NOT considered during the new iteration

AA with different Gains: GM Model C

15 hours of GM
Mean of 5 seeds BPM res $=1 \mu \mathrm{~m}$ Step $=1$ hrs 100 AA iterations

It is important to find proper Gain factor OR
Optimize between gain factor and number of AA iterations

ILC
 Effect of AA for 15 hours and different Gains

AA: Effect on Perfect Lattice for Different GM Models

- Perfectly straight lattice - ILC BCD Like Straight Lattice (114 FODO cells)
- 20 different GM seeds (GM - Models ' A ' , ' B ’ and ‘ C ')

In each seed:

- GM of 30 days in step of 2 hrs.
- When AA incorporated: AA of 100 iterations after every 2 hrs . (perfect alignment, BPMres $=0$, Gain $=0.6 * 0.33$, no GM during AA iterations)

After 50 AA iterations

After 100 AA iterations

Time steps ($\times 2$ hrs.)

ILC
 Different GM Models - Effect on Perfect Lattice

Y-emittance (nm) @ Linac exit after 100 AA iteration for different seeds

Time 30 days with step 2hrs

I ndividual variation for different seeds \& GM models can affect substantially on beam emittance

Beam Steering vs. BPM resolution

121 Dynamic alignment

One-to-one steering scheme for different time periods:

- Straight Lattice 114FODO
- Perfect alignment
- BPM resolution $=0$
- GM model B
- Use setting after previous steering

114FODO, Straight, Perfect, model b, BPMres=0, 121 align

Summary

- Lattices are available in FNAL Lattice Repository httos:/ / lattices.fnal.gov/
- Bumps Studies shows that emittance can be effectively corrected using a few Bumps (~3)
- Adaptive Alignment keeps emittance under control for $\mathbf{\sim}$ 10-30 days
- 121 Steering shows the similar behaviour as AA (quadratic growth in time).

