Higgs searches in ATLAS at low luminosity phase (\mathcal{L} up to 30 fb⁻¹)

International Linear Collider Workshop LCWS 2007, ILC 2007 DESY, Hamburg 30 May-3 June 2007

Rosy Nikolaidou

On behalf of the ATLAS collaboration

Outline

- > Introduction
- > SM Higgs searches
 - > Studies of the Higgs properties
- ➤ Highlights of MSSM searches
 - ➤ CP- conserving only shown here
- Summary Conclusions
 - What to do with the first data (highlights only)

Introduction

Exploring LHC data we should answer to the following basic questions:

- Mechanism for EW symmetry breaking?
 - Through a SM Higgs boson?
 - Is there anything else (new physics , new particles) ?
- Concentrating on the search for the Higgs boson(s) we know up to now that:
 - A low mass candidate is favored
 - SM
 - From direct searches (LEP: $m_H > 114.4 \text{ GeV}$)
 - From electroweak fits $m_H < 182 \text{ GeV}$ (@95% C.L)
 - SUSY models
 - A "light" Higgs boson is favored

LHC searches for the Higgs boson are focused in the low mass region mainly between 115-200 GeV

- variety of search channels with final states depending on the production and decay mode of Higgs boson
 - Main emphasis in semileptonic/leptonic channels
 - Pure hadronic channels too difficult to trigger on and to distinguish from the background.

Initial running conditions

Status of the LHC Project, Ph. Lebrun, CERN Hadron Collider Physics Symposium 2007 La Biodola, Elba, 20-26 May 2007

- First pp collisions at $\sqrt{s}=14\text{TeV}$ from summer 2008
- Luminosity scenarios :
 - For 2008: $\mathcal{L} < 10^{-33}$ cm⁻² s⁻¹, Integrated \mathcal{L} up to 1 fb⁻¹
 - For 2009: $\mathcal{L} = 1-2 \ 10^{-33} \ \text{cm}^{-2} \ \text{s}^{-1}$, Integrated $\mathcal{L} < 10 \ \text{fb}^{-1}$
- In this talk main focus on:
 - Low Luminosity phase $\mathcal{L} \sim 10^{-33}$ cm⁻² s⁻¹
 - and in particular what we can do with the first ~fb⁻¹ in the Higgs searches.

Cross section and Events rate (√s=14 TeV)

Higgs production and decays of SM Higgs at LHC

Typical uncertainties on the cross sections

gg fusion: $\sim 10\text{--}20~\%$ NNLO VBF : $\sim 5\%$ NLO ttH : $\sim 10~\%$ NLO WH,ZH : $\sim 5\%$ NNLO

NLO computations for all the relevant BR Accuracy \sim few %

Strategy to detect a SM Higgs at LHC

Key points to define the strategy for detecting the Higgs

- Production mode, branching ratios
- Background level per process

1. gg fusion dominant production

- $H \rightarrow \gamma \gamma$,
- $H \rightarrow ZZ(*) \rightarrow 4I$, $WW(*) \rightarrow 2I2v$ possible (for mH>130 GeV)
 - H→bb suffers from QCD background
 - H→ττ also difficult

2. VBF production

- $H \rightarrow \tau\tau$ possible due to the distinct signature of the 2 forward jets in this mode
- H→WW channel

3. ttH production

t→lepton decays for trigger, H→bb possible at low mass

4. WH, ZH production:

H→γγ, WW(*) decays only at high luminosity

The ATLAS Detector

Inner Detector: (Silicon pixels + strips +TRT \rightarrow particle ID (e/ π) B=2T, $\sigma/p_T \sim 4x10-4 p_T \oplus 0.01$ (e.g. $H \rightarrow bb$)

Muon system: (precision chambers + triggers in air core toroids B=0.5T mean value), $\sigma/pT \sim 7$ % at 1 TeV standalone (e.g. H,A \rightarrow µµ, H \rightarrow 4µ)

Electromagnetic Calorimeters: (Pb liquid argon) $\sigma/E \sim 10\%/\sqrt{E}$, Uniform longitudinal segmentation Provides: e/v identification, energy and angular resolution, v/jet, $v/\pi 0$ separation (e.g. $H\rightarrow vv$)

Hadronic Calorimeters: (Fe scint Cu-liquid argon) $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$

Jet, E_{Tmiss} performance (e.g. $H \rightarrow \tau \tau$, $H \rightarrow bb$)

Energy-scale: $e/v\sim0.1\%$, $\mu\sim0.1\%$, Jets~1%

Commissioning the ATLAS detector

A small collection of pictures...

SM Higgs searches

SM Higgs searches divided to three categories:

- •Benchmark channels for detector performance studies
 - H→γγ
 - H→4I
- Counting experiments
 - •H→WW(*)
- Vector Boson Fusion channels
 - •H→WW(*), ττ

Accessibility of different H decay modes:

- For low mass H m_H<2m_Z
 - bb dominant but background huge, only ttH channel accessible one
 - also accessible $H \rightarrow \tau\tau$, $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow WW^* \rightarrow IvIv$, $H \rightarrow \gamma\gamma$
- For $m_H > 2m_Z$
 - H→ZZ→4I, WW modes

H→γγ searches / Benchmark channel for detector performance

Characteristics: Narrow peak over smooth background

• Interesting channel in the H mass region 100-140 GeV *Backgrounds:* irreducible $\gamma\gamma$ continuum, reducible jj, γj With one or both misidentified jets as γ *Key points:*

- energy resolution of em calorimeter and primary vertex determination
 - Mass resolution ~1%
- γ id to reduce jet background at true γ level by:
 - High γ/π^0 separation ,isolation criteria
 - recovery of converted photons (~40% of events)
- powerful jet rejection
 - (>10³) for 80% γ efficiency

Recent developments: $\gamma\gamma$ background computed at NLO (agrees with Tevatron data); allows for signal to be computed at NLO level.

Analysis improvements: -Add of new discriminating variables (Pt of diphotons, angular distribution)

- Divide the events according to their production mode

Most powerful channel at low mass region $\sim 6\sigma$ at L=30 fb⁻¹

H→4 leptons searches/ Benchmark channel for detector performance Characteristics: Narrow peak over a small background

Key points: e/μ identification, energy resolution

- Mass resolution 1.5-2 GeV dominated by detector resolution Main backgrounds:
- reducible: Zbb \rightarrow 4l, tt \rightarrow 4l
 - Reduced by isolation criteria, impact parameter cuts
- irreducible: ZZ known at NLO, 20% added to account for gg→ZZ

Very clean signature but with low statistics

small cross section (e.g σ x BR(H \rightarrow 4l) ~3-11 fb for m_H=130-200 GeV)

H→ WW*

Characteristics: Interesting channel in mass region ~160 GeV where BR (H→WW) >95%

No mass reconstruction, counting experiment

Look for dilepton final states (ee,e μ , $\mu\mu$)

Backgrounds: tt rejected by jet-veto,

WW continuum rejected by lepton spin

correlations

$$m_T = \sqrt{2p_T^{\ell\ell} E_T (1 - \cos \Delta \phi)}$$

Difficulties: No mass peak,

needs accurate estimate of the

background rate;

use of control regions to estimate backgrounds and extrapolate to

signal

Recent developments:

gg > WW continuum contribution included include tt and single top backgrounds @ NLO

VBF channels

Characteristics: Topology of the events with no central jets and H decay products between the jets

Main decay modes: $H\rightarrow WW$, $\tau\tau$ with at least one of

 W/τ decaying leptonically

 τ reconstruction increases the sensitivity

Backgrounds: tt,Wt, WW+jets, γ/Z^* +jets

Selection criteria: Based on jet tagging: Apply central jet veto, ask for

large rapidity difference between the tagged jets

VBF Analyses on $H\rightarrow WW(*)$, $\tau\tau$ channels showed:

- increase of discovery potential of WW(*) channel
- sensitivity to H \rightarrow $\tau\tau$ decays in the low mass region ~120 GeV

VBF H→ττ channel

Selection criteria: Tagging jets +H decay between jets

use of collinear approximation fo mass reconstruction (assume: I,v from taus collinear, $\chi_{\tau 1}$, $\chi_{\tau 2}$ visible fraction of energy, missing Pt comes from the neutrinos)

Backgrounds: mainly Z→ττ + 2jets

Resolution: Limited by Missing ET

resolution (10 - 13 GeV)

VBF H→ WW* channel

Use also of lepton spin correlations to enhance the signal

Increase of signal/background ration in the VBF channel by ~3.6

ttH, H→bb channel

Characteristics: Look at semileptonic decays of

one top quark to allow for trigger

Topology with high jet multiplicity

Backrounds:

1. tt(+jj) b-tagging must be optimised for light jet rejection

3. ttbb (EW/QCD) small differences in kinematic properties w.r.t ttH inserted in a likelihood function

to allow for rejection

Selection cuts: Reconstruction of 6 jets,

4 b-tagged, reconstruction of tt pairs

Recent findings: ATLAS (and CMS) results
more pessimistic than at TDR

Under investigation

- smaller cross-sections

systematics on b-tagging,
 jet resolution included

g 0000

Combined sensitivity for a light SM Higgs

General remarks: 1. Absence of NLO cross sections in the following plots
2. Studies in some channels ongoing
- New sensitivity
- Full simulation with new MC generators

Background systematics: the key issue

G. Unal
Physics at LHC
Cracow, July 2006

Background systematics and how to normalize bkg from data

Channel	Main background	S/B	Bkg. sys for 5σ	Proposed technique/comments
Η->γγ	Irreduc. γγ Reducible qγ	3-5%	0.8%	Side-bands (bkg shape not known a priori)
ttH H->bb	ttbb	30%	6%	Mass side-bands Anti b-tagged ttjj ev.
H->ZZ*-> 4 lep	ZZ->4I Reducible tt, Zbb	300-600%	60%	Mass side-bands Stat Err <30% 30fb ⁻¹
H->WW*->IIvv	WW*, tW	30-150%	6-30%	No mass peak Bkg control region and extrapolation
VBF channels In general	Rejection QCD/EW	Study forward jet tag and central jet veto		Use EW ZZ and WW QCD Z/W + jets
VFB H->WW	tt, WW, Wt	50-200%	10%	Study Z,W,WW and tt plus jets
VBF H->ττ	Zjj, tt	50-200%	10-40%	Mass side-bands Beware of resolution tails

R. Nikolaidou

Higgs properties

To define Higgs properties (mass, coupling, spin) more luminosity than \sim 30 fb-1 is needed (a few examples given below)

- Higgs spin (CP):
 - If we observe the process $gg \rightarrow H$ or $H \rightarrow \gamma \gamma$ then spin 1 is excluded
 - For $M_H > 200$ GeV, study spin/CP from $H \rightarrow ZZ \rightarrow 4I$
 - Exclusion can be deduced from θ and ϕ distributions

Higgs properties

Higgs couplings: Concentrate on low m_H scenario and define 3 steps:

Atlas note phys-2003-030

1st step: assume spin 0 and measure $\sigma \times BR$

in different channels

2nd step: assume only one H and

measure the ratio of BRs

3rd step: assume no new particles on the loop, no strong coupling to light fermions and express rates and BR as a function of 5 couplings $g_w, g_Z, g_{top}, g_b, g_\tau$

like for example:

$$\sigma(VBF)$$
: $a_{WF}.g_{W}^{2}+a_{ZF}.g_{Z}^{2}$

BR($\gamma\gamma$): $(b_1.g_W^2 - b_2.g_{top}^2)/\Gamma_H$

MSSM Higgs searches

Phenomenology:

- 2 Higgs doublets with 5 physical states: h,H,A,H±
- Higgs sector described by 4 masses and 2mixing angles β and α
- At leading order
 - 2 independent parameters (usually use of: $M_{\Delta I}$ tan β)
 - hierarchy of mass m_h<m_z
- Couplings $g_{MSSM} = \xi g_{SM}$
 - no coupling of A to W/Z
 - large BR(h,H,A $\rightarrow \tau\tau$, bb) for large tanß
- Large loop corrections on masses and couplings
 - Parameters M_{top} , X_t , M_{SUSY} , M_2 , μ , M_{gluino}
 - Radiative corrections increase upper bound on m_h ~135 GeV

ξ	t	b/τ	W/Z
h	$\cos \alpha / \sin \beta$	-sin $lpha$ /cos eta	$sin(\alpha-\beta)$
Η	$sin\alpha/sin\beta$	$\cos \alpha / \cos \beta$	$cos(\alpha-\beta)$
A	cotβ	tanβ	

 α mixing angle between h H expressed in terms of M_A tan β

Strategy for exclusion bounds and discovery potential:

 Choose specific parameter points: benchmark scenarios

Scan (M_A, tanβ) plane after fixing the
 5 parameters in benchmark scenarios

Mhmax scenario: maximal M_h when Higgs-stop mixing large No mixing scenario: stop mixing set to 0 Gluophobic scenario: coupling of h to gluons suppressed designed for $gg \rightarrow h$, $h \rightarrow \gamma\gamma$, $h \rightarrow ZZ \rightarrow 4l$ Small a scenario: coupling of h to $b(\tau)$ suppressed designed for VBF, $h \rightarrow \tau\tau$ and $tth, h \rightarrow bb$

Strategy for the searches:

Apply SM searches Apply direct searches of H/A decaying to SM particles Direct searches of H ±

Name	M _{susy}	μ	M ₂	X,	Mgluino
	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)
m _h -max	1000	200	200	2000	800
no mixing	2000	200	200	0	800
gluophobic	350	300	300	-750	500
small α	800	2000	500	-1100	500

MSSM Higgs searches/ Light Higgs boson at 30 fb⁻¹

MSSM Higgs searches/overall discovery potential (300 fb⁻¹)

Some remarks from this plot

- •In the whole parameter space at least 1 Higgs boson is observable
 - in some parts >1 Higgs bosons observable
- But large area in which only one Higgs boson observable

Basic question: Could we distinguish between SM and MSSM Higgs sector

- e.g via rate measurements?

Result assuming no $H \rightarrow SUSY$

- On going studies to include Susy decays of Higgs bosons e.g $H\pm \rightarrow \chi \pm_{1,2} \chi^{0}_{1,2,3,4} \rightarrow 31+E_{T}^{miss}$

MSSM Higgs searches/distinguish between SM and MSSM Higgs sector

Basic question: Could we distinguish between SM and MSSM Higgs sector

(e.g via rate measurements?)

Method: - Looking at VBF channels (30 fb⁻¹) and estimate the sensitivity from

rate (R) measurements

- Compare expected rate R in MSSM with prediction from SM

Summary / Conclusions

Detailed studies of many SM /MSSM Higgs searches have been performed with ATLAS detector

SM searches:

- Good sensitivity can be reached already with~10 fb⁻¹
 - only if we control properly the detector performance and background shapes. Only the real data will tell us that
- If Higgs is there, detailed studies of its properties require more statistics

MSSM searches:

- The whole MSSM parameter space is covered by at least one Higgs boson
 - Systematic error evaluation ongoing
- Large parameter space in which only one Higgs boson observable
 - Studies to include SUSY decays of Higgs ongoing
 - Work is needed to distinguish between SM and MSSM sector in this case

ATLAS detector is being commissioned. We expect the first data (other than cosmics) in less than 1 year from now.

- Exciting times are on the way...
 - What will we have to do with the first fb⁻¹?
 - Only a few highlights in the following 3 slides...

Acknowledgments:

- D. Cavalli, L. Fayard, L. Feligioni,
- A. Kaczmarska, S. Paganis,
- M. Schumacher, G. Unal, L. Vacavant

What we will do with the first data at √s=14 TeV

Detector performance calibration and alignment

- Common strategy to all sub-systems
- Use of Z,W,top for most of the studies
 - Fortunately LHC is a Z,W,top factory!
- For calorimeter calibration
 - J/ψ ->e⁺e⁻ and Z->e⁺e⁻ for electromagnetic calorimeter
 - Z->I+I- γ mass constraint to set γ energy scale
 - W->jj from Top and $Z/\gamma + 1$ jet events Jet Energy Scale
 - Z→vv、W→lv Missing ET calibration
- For momentum calibration
 - $J/\psi \rightarrow \mu^+\mu^-$ and $Z\rightarrow \mu^+\mu^-$ for Muon momentum
- To Determine E/P matching
 - Isolated tracks (W->lv, t decay)
- b-jet tagging efficiency
 - tt events

Precision we expect to have in the beginning Inner tracking alignment 20-200 μm e/m calo Uniformity $\sim 1\%$ e/ γ scale $\sim 1-2\%$ Jet Energy Scale $\sim 10\%$

Desired precision 10 μ m 7‰(unif) 1‰ (scale) 1 %

Number of events at the first 10-100 pb⁻¹ of LHC

How many events per experiment at the beginning?

Examples of analyses

Z,W production at 10-100 pb⁻¹: Extract the τ signal provided an efficient E_T^{miss} and τ trigger

Expected rates for 100 pb ⁻¹	$\begin{array}{c} W \to \tau \nu, \\ \tau \to \text{hadron} \end{array}$	$W \to e \nu$	$Z \rightarrow \tau \tau$, $1\tau \rightarrow \text{hadron}$	
σ.B (pb)	11200	17300	1500	
τ30i + xE35	~ 15 000	~ 250 000	~ 1300	
τ20i + xE25	~ 60 000	~ 560 000	~ 3500	

Assuming eff ~ 80% for τ trigger, ~ 50% for τ reco/id

Events for 100 pb⁻¹

"counting" experiment: evidence in the N_{Track} spectrum. Signal \times 10 and bgd \times 100 with respect to 2 TeV collisions.

Profit from low-luminosity operation to trigger at lowest possible thresholds ($E_{\rm T}$ 715i), raise $E_{\rm T}^{miss}$ cut as luminosity goes up.

Require QCD jet rejection of 10^3 - 10^4 at 50% efficiency and $p_T \sim 20$ GeV

Top measurements with < 1fb⁻¹ without b-tag

-Event topology: 3 jets with highest ΣP_T

Se • 4 • 1s • M

Select events with:

- 4 jets with P_{τ} > 40 GeV
- •Isolated lepton P_T > 20 GeV
- ·Missing E_T > 20 GeV

Top events will be used to calibrate the calorimeter jet scale $(W\rightarrow jj \text{ from } t\rightarrow bW)$ With 30pb-1 data, $\Delta m_{top} \sim 3.2 \text{ GeV}$ (sys. Error dominated: FSR,b-jet scale)

Backup slides

Higgs properties

To define Higgs properties (mass, coupling, spin) more luminosity than \sim 30 fb-1 is needed (a few examples given below)

- Higgs mass measurement :
 - Channels that can contibute $H \rightarrow \gamma \gamma$, $H \rightarrow 4$ leptons
 - also $H \rightarrow \tau \tau$ at low luminosity

Precision on SM Higgs mass

Width accessible only for mH>200 GeV

Precision on SM Higgs width

Particle ID capabilities of ATLAS detector

Look for example at A. Kaczmarska talk at Physics at LHC Cracow, July 2006

• Particle identification capability of Atlas detector (e,γ,τ , b-tag, μ)

$$-\varepsilon(e) \sim 70\%$$

$$Rej(jet) \sim few 10^5$$

$$-\varepsilon(\gamma)\sim 80\%$$

$$Rej(jet) \sim 10^4$$

$$-\varepsilon(\tau)\sim30\%$$

$$Rej(jet) \sim 600-10\ 000$$

$$-\epsilon(b)\sim60\%$$

$$Rej(u,d) \sim 500$$
, $Rej(c)\sim 10$

$$-\epsilon(\mu)\sim95\%$$

Commissioning the ATLAS detector

Endgame: Installation Schedule 2007

If all goes well:

finish installing all sub-detector components before end of 2007

biggest/outermost (muon spectrometer endcaps) and smallest/innermost (pixel) detectors are last to be installed

Ch. Amelung

Status of ATLAS Commissioning

slide 22 of 23

ATLAS / CMS characteristics, performance

SYSTEMS	ATLAS	CMS
INNER TRACKER	Silicon pixels+ strips TRT \rightarrow particle ID (e/ π) B=2T $\sigma/p_T \sim 4 \times 10^{-4} p_T \oplus 0.01$	Silicon pixels + strips No particle identification $B=4T$ $s/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ Uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E\sim2.5\%\sqrt{E}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$	Cu-scint. (> 5.8 I +catcher) $\sigma/E \sim 100\%/\sqrt{E} \oplus 0.05$
MUON SYSTEM	Air-core toroids $\sigma/pT \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma$ /p _T \sim 5% at 1 TeV combining with tracker
MAGNETS	Inner tracker in solenoid (2T) Calorimeters in field-free region Muon system in air-core toroids (4T at peak, 0.5 T mean value)	Solenoid 4T Calorimeters inside the field

MSSM searches /H±

Two different mass regions investigated

- Low mass : $M_{H\pm} < M_{top}$ $gg \rightarrow tt$, $tt \rightarrow H^{\pm}bWb \rightarrow \tau vb$ lvb $\rightarrow \tau vb$ aab

Only for low luminosity

-high mass: $M_{H\pm} > M_{top}$ gb $\rightarrow H^{\pm}t$, $H \rightarrow \tau V$