Jet Reconstruction and Resolutions

A.Mazzacane Universita' del Salento – INFN Lecce

LCWS/ILC 2007

Hamburg, June 1st 2007

ILC Experiment

Most of the important physics processes to be studied in the ILC experiment have multi-jets in the final state

Jet energy resolution is the key in the ILC physics

Jets at ILC experiments contain:

- Charged particles (~60%) measured by Tracker
- Photons (~30%) by ECAL

- Neutral hadrons (~10%) by ECAL + HCAL The world-wide consensus of the performance goal for the jet energy resolution is $\sigma_{F} / E = 30\% / \sqrt{E(GeV)}$

Fourth Concept Detector ("4th")

Basic conceptual design: 4 subsystems

- Vertex Detector 20-micron pixels (SiD design)
- Time Projection Chamber or
- CluCou Drift Chamber
- Double-readout ecal
- Double-readout fiber hcal: scintillation/Čerenkov
- Muon dual-solenoid spectrometer

The 4th Concept Calorimeter

- Cu + scintillating fibers + Ĉerenkov fibers
- ± 1.5° aperture angle
- ~ 10 λ_{int} depth
- Fully projective geometry
- Azimuth coverage

down to 3.8°

- Barrel: 13924 cells
- Endcaps: 3164 cells

Hadronic Calorimeter Cells

Bottom view of single cell

Number of fibers inside each cell: 1980 equally subdivided between Scintillating and Cerenkov Fiber stepping ~2 mm Prospective view of clipped cell

Cell length: 150 cm

Top cell size:~ 8.8×8.8 cm²

Simulation Reconstruction and Analysis in IlcRoot Framework

CERN architecture (based on Alice's Aliroot)

- Uses ROOT as infrastructure
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- Six MDC have proven robustness, reliability and portability
- Single framework, from generation to reconstruction through simulation. Don't forget analysis!!!

Simulation/Reconstruction Steps

Simulation Details

- Event generators: Pandora-Pythia (moving to Sherpa)
- Full simulation is in place HCAL and ECAL (no gaussian smearing nor perfect pattern recognition)
- Hits using Fluka MC (for calorimeter studies)
- Cerenkov and Scintillation photon production and propagation in the fibers fully simulated. Poisson uncertaintity introduced in the number of photon produced
- Full SDigits + Digits + Pattern Recognition chain implemented (VXD, ECAL and HCAL)
- PID implemented for ECAL and HCAL only

Reconstruction Details

- Reconstruct tracks from the tracking devices (Kalman Filter)
- Build Clusters from cells distant no more than two towers away
- Unfold overlapping clusters through a Minuit fit to cluster shape (in progress)
- Calibration of HCAL

Calibration

Energy of HCAL calibrated in 2 steps: 1. Calibrate with single 40 GeV e⁻ raw E_c and E_s

2. Calibrate with single 40 GeV π^-

 η_C and η_S

Reconstructed energy

Once HCAL calibrated, calorimeter energy:

$$E_{HCAL} = \frac{\eta_{S} \cdot E_{S} \cdot (\eta_{C} - 1) - \eta_{C} \cdot E_{C} \cdot (\eta_{S} - 1)}{\eta_{C} - \eta_{S}}$$

$$\eta_c = \left(\frac{e}{h}\right)_C \qquad \eta_s = \left(\frac{e}{h}\right)_S$$

40 GeV pion

40 GeV pion

Jets Studies 18

The Jet Finder Algorithm

- Look for the jet axis using the Durham algorithm
 - Charged tracks
 - Calorimeter cells
- Jet core
 - Open a cone increasingly bigger around the jet axis (< 60°)
 - Add cells in the cones
- Jet outliers
 - Check leftover/isolated calo cluster for match with a track from TPC+VXD
 - Add isolated tracks and isolated neutral clusters
 - Add low P_t tracks not reaching the calorimeter
- Muons
 - Add tracks reconstructed in the MUD
- V0's, kinks

Jet Reconstruction Strategy

Jets Performance Studies

- e⁺e⁻ -> qq generated in E_{cm} = (60, 100, 140, 200, 300, 500) GeV
- HCAL Resolutions and Responses from:
 - total reconstructed energy
 - jet reconstructed energy (30, 50, 70, 100, 150, 250) GeV

30 GeV Jet

30 GeV Jet

37

30 GeV Jet

38

Work in progress

Improve Jet Finder

Improve Jet Finder

An EMCAL design with Dual Readout crystal technology is under way

ECAL+HCAL Cells

ECAL Layout

- 25 cm PbF₂ with PbF2 0.15% Gd doping
- ~ 1.25 λ
- ~ 27.7 X/X_o
- Fully projective geometry
- ~1.5° aperture angle
- Azimuth coverage down to 3.4°
- Barrel: 55696 cells (944slices containing 236 cells)
- Endcaps: 12656 cells arranged in 108 rings

ECAL Performance Studies

- Assume 10% QA and PbF2 doped with 0.15% Gd
 - Scintillation pe yield: 4.5 pe/MeV
 - Cerenkov pe yield: 1.5 pe/MeV
- Just started to produce events
- Priority given to $\gamma\gamma$ studies $(\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu)$
- Preliminary resolution numbers available

E_{C} 100 GeV pion in ECAL+HCAL

E_s 100 GeV pion in ECAL

E_{TOT} 100 GeV pion

51

E_{TOT} 100 GeV pion in HCAL

52

Conclusions

- The 4th Concept has chosen a Calorimeter with Dual Readout
- The technology has been proved at a test beam, but never in a real experiment
- Performance of Calorimeter extremely good:

 $\sigma_{\rm E}/{\rm E} = 34\%/\sqrt{\rm E}$ (single particles)

 $\sigma_{\rm E}/{\rm E} = 35\%/{\rm VE}$ (jets)

- There is room to improve this resolutions
- Dual Readout crystal EMCAL studies are under way

Backup slides

ILC

- electron-positron collider ;
- ILC's design consist of two facing linear accelerators, each 20 kilometers long;
- c.m. energy 0.5 1 TeV ;
- ILC target luminosity :
 500 fb-1 in 4 years

Requirements for ILC Detectors

- Good jet energy resolution to separate W and Z
- Efficient jet-flavor identification capability
- Excellent charged-particle momentum resolution
- Hermetic coverage to veto 2-photon background

Detector Design Study

- Detector Design Study
 - Conceptual design study of detector systems
 - 4 major concepts: 3 with PFA + 1 with Compensation Calorimetry

- Sub-detector R&D
 - More than 80 groups in the world (about 1000 physicist)
 - Usually related with several detector concepts
 - Horizontal collaboration

4th Concept Detector

Fluka vs G3/G4

Geant3	46.541 GeV
Fluka	48.074 GeV
Geant4 QGSP_BER	45.024 GeV
Geant4 QGSP_BER_HP	47.791 GeV

Present Status: VXD+TPC+DREAM

Hadron Calorimeters

- Detectors measuring properties of particles by total absorption (calorimeters) crucial in HEP experiments
- Detection of em interacting particles performed with high precision
- NOT TRUE for particles subject to strong interaction, due primarily:
 - Tipically, larger signal per unit E_{dep} for em shower component $(\pi^0 \rightarrow \gamma \gamma)$ than for non em component (i.e. e/h >1)
 - 2. Fluctuations in the energy sharing between these 2 components large and non-Poissonian.

1.

Performance Goal

• Jet energy resolution

$$\sigma(E_j) / E_j = 30\% / \sqrt{E_j (\text{GeV})}$$

• Impact parameter resolution for flavor tag

 $\sigma_{IP} = 5 \oplus 10 / p\beta \sin^{3/2} \theta \,(\mu \text{m})$

- \rightarrow 1/2 resolution term, 1/7 M.S. term w.r.t. LHC
- Transverse momentum resolution for charged particles

 $\sigma(p_t) / p_t^2 = 5 \times 10^{-5} (\text{GeV/c})^{-1}$

 \rightarrow 1/10 momentum resolution w.r.t. LHC

• Hermeticity

$$\theta_{\min} = 5 \text{ mrad}$$

Problems in Hadron Calorimeters

- Hadronic response function non-Gaussian
- Hadronic signals non-linear
- Poor hadronic energy resolution and not scaling as E^{-1\2}

LESSONS FROM 25 YEARS OF R&D

Energy resolution determined by fluctuations

The "key" for the solution

To improve hadronic calorimeter performance *reduce/eliminate the (effects of) fluctuations that dominate the performance*1. Fluctuations in the em shower fraction, f_{em}
2. Fluctuations in visible energy (nuclear binding energy losses)

Solutions to f_{em} fluctuations

Several ways to deal with problem 1:

- Compensating calorimeter (design to have e/h=1) _____ fluctuations in f_{em} eliminated by design
- Off-line compensation (signals from different longitudinal sections weighetd)
- Measurements of f_{em} event by event (through spatial profile of developing shower)

Solutions in ILC community

- Particle Flow Analysis (PFA)
 calorimeter information combined with measurements from tracking system
- 2. Dual Readout Calorimeter

measurement of f_{em} value event by event by comparing two different signals from scintillation light and 4th Ĉerenkov light in the same device

GLD

LDC

SiD

PFA Calorimetry

PFA (Particle Flow Analysis) is thought to be a way to get best jet-energy resolution Measure energy of each particle separately Charged particle : by tracker Gamma : by EM Calorimeter Neutral hadron : by EM and Hadron Calorimeter Overlap of charged cluster and neutral cluster in the calorimeter affects the jet-energy resolution Cluster separation in the calorimeter is important Large Radius (R) Strong B-field Fine 3-D granularity (σ) BR^2 Small Moliere length (R_M) Algorithm

Often quoted figure of merit :

PFA Simulation Study at ILC

Z → qq @ 91.18GeV

Unfortunately, the stochastic term increases with energy

Dual (Triple) Readout Calorimetry

Dual-Readout: Measure every shower twice – in Scintillation light and in Cerenkov light.

- Spatial fluctuations are huge $\sim \lambda_{int}$ with high density EM deposits: fine spatial sampling with scintillating fibers every 2mm
- EM fraction fluctuations are huge, $5 \rightarrow 95\%$ of total shower energy: insert clear fibers generating Cerenkov light by electrons above $E_{th} = 0.25$ MeV measuring nearly exclusively the EM component of the shower (mostly from $\pi^0 \rightarrow \gamma\gamma$)
- Binding energy (BE) losses from nuclear break-up: measure MeV neutron component of shower.

The C/S method

Hadronic calorimeter response (C,S) can be expressed with f_{em} and e/h

$$R(f_{em}) = f_{em} + \frac{1}{e / h} (1 - f_{em})$$

• e/h depends on: active & passive calorimeter media and sampling fraction (e/h)_c = $\eta_c \sim 5$ for copper/quartz fiber (e/h)_s = $\eta_s \sim 1.4$ for copper/plastic-scintillator

Asymmetry, non-gaussian & non-linear response are due to fem fluctuation...

Measurement f_{em} event by event is the key to improve hadronic calorimeter response

$$\frac{C}{S} = \frac{f_{em} + 0.20(1 - f_{em})}{f_{em} + 0.71(1 - f_{em})}$$

Dream Performance (pions)

Results from DREAM simulation (V. Di Benedetto)

- Scintillation and Cerenkov processes well simulated
- Easily switch from Cu to W (however, need to change calibration values of η_{S} and $\eta_{\text{C}})$
- Pattern recognition in place (nearby cells).
- Hadronic showers appear to reproduce the compensation effect seen in the test module (Fluka)
- PiD ($e/\pi/\mu$) results are very promising

Present Status: VXD+TPC+DREAM

(1) Measure MeV neutrons (binding energy losses) by time.

Velocity of MeV neutrons is $\sim 0.05 \text{ c}$

- (1) Scintillation light from np→np scatters comes late; and,
- (2) neutrons fill a larger volume

(2) Measure MeV neutrons (binding energy losses) by separate hydrogenous fiber

- A hydrogenous scintillating fiber measures proton ionization from np→np scatters;
- A second scintillating non-hydrogenous fiber measures all charged particles, but except

(3) Measure MeV neutrons (binding energy losses) with a neutron-sensitive fiber

- Lithium-loaded or Boron-loaded fiber (Pacific Northwest Laboratory has done a lot of work on these)
- Some of these materials are difficult liquids
- Nuclear processes may be slow compared to 300 ns.
- But, most direct method we know about.

(4) Measure MeV neutrons (binding energy losses) using different Birk's constants

- Birk's constant parameterizes the reduction in detectable ionization from heavily ionizing particles (essentially due to recombination)
- Use two scintillating fibers with widely different Birk's constants.
- Two problems: (i) hard to get a big difference, and
 (ii) neutron content depends on the difference of two₃

The Ultimate Calorimetry: Triple fiber and dual crystal

Triple fiber: measure every shower three different ways: "3-in-1 calorimeter"

- Spatial fluctuations are huge ~λ_{int} with high density EM deposits: fine spatial sampling with scintillating fibers every 2mm
- EM fraction fluctuations are huge, $5 \rightarrow 95\%$ of total shower energy: insert clear fibers generating Cerenkov light by electrons above $E_{th} = 0.25$ MeV measuring nearly exclusively the EM component of the shower (mostly from $\pi^0 \rightarrow \gamma\gamma$)
- Binding energy (BE) losses from nuclear break-up: measure MeV neutron component of shower.

Dual-readout crystal EM section (in front of triple-readout module)

- Half of all hadrons interact in the "EM section" ... so it has to be a "hadronic section" also to preserve excellent hadronic energy resolution.
- Dual-readout of light in same medium: idea tested at CERN (2004) "Separation of Scintillation and Cerenkov Light in an Optical Calorimeter", NIM A550 (2005) 185.
- Use multiple MPCs (probably four, two on each end of crystal), with filters.
- Physics gain: excellent EM energy resolution (statistical term very small), excellent spatial resolution with small transverse crystal size. (This is what CMS needs ...)

Calorimeter: triple-readout fibers + dual-readout crystals in front₈₅

Particle Flow Algorithm

Flow of PFA

Photon Finding
 Charged Hadron Finding
 Neutral Hadron Finding
 Satellite Hits Finding

 *Satellite hits = calorimeter hit cell which does not belong to a cluster core

Dual-Readout: Measure every shower twice - in Scintillation light and in Cerenkov light.

$$(e/h)_{C} = \eta_{C} \sim 5$$
 $(e/h)_{S} = \eta_{S} \sim 1.4$

 $C = \left[f_{EM} + (1 - f_{EM}) / \eta_C \right] E$ $S = \left[f_{EM} + (1 - f_{EM}) / \eta_S \right] E$

→ C / E = 1 /
$$\eta_{\rm C}$$
 + f_{EM} (1 - 1/ $\eta_{\rm C}$)

Data NIM A537 $(2005)^{87}$ 537.

More important than good Gaussian response: DREAM module calibrated with 40 GeV e⁻ into the centers of each tower responds linearly to π^- and "jets" from 20 to 300 GeV.

Hadronic linearity may be the most important achievement of dualreadout calorimetry.

Calorimeric/charged contribution

Jet Outliers Charged Contribution

