Calorimeter Calibration with the Muon Spectrometer

On behalf of 4th Concept

A. Mikailicenko talk, ILC Workshop Valencia 2006

Dual Solenoid B-field

Magnetic field of dual solenoid and wall of coils

Muon Spectrometer

Channel Count

Barrel:

31500 tubes 21000 channels 840 cards

End caps: 8640 tubes 9792 channels 456 cards

Total:

40140 tubes 30792 channels 1296 cards

MUD for jet finding and tail catching

MUD in Calorimeter Calibration

Backup slides

4th Concept Detector Layout

Present Status: VXD+TPC+DREAM

Dream Performance (pions)

m-System basic element: drift tube

radius 2.3 cm filled with 90% He – 10% iC₄H₁₀ @ NTP gas gain few × 10⁵ total drift time 2 µs primary ionization 13 cluster/cm $\Rightarrow \approx$ 20 electrons/cm total both ends instrumented with:

•	> 1.5 GHz bandwith	ASIC chip
•	8 hit fADC	under

- > 2 Gsa/s sampling rate development
- free running memory

for a

• fully efficient timing of primary ionization: **cluster counting**

at INFN-LE

- accurate measurement of longitudinal position with charge division
- particle identification with dN_{cl}/dx

Full Spectrometer

Present Status: VXD+TPC+DREAM

P_t Resolution (0.3-20 GeV)

21

Tracking Algorithm

- Primary TPC seeding: looks for tracks with 20 hits (pads and/or μmegas) apart + beam constraint
- Secondary TPC seeding: looks for tracks with hits in layer 1, 4 and 7 (no beam constraint)
- **Parallel Kalman Filter** then initiated:
 - 1st step: start from TPC fit + prolongation to VXD (add clusters there)
 - 2st step: start from VXD, refit trough TPC + prolongation to MUD
 - 3st step: start from MUD and refit inword with TPC + VXD
- Final step: isolated tracks in VXD and in MUD
- Kinks and V0 fitted during the Kalman filtering
- All passive materials taken into account for MS and dEdx corrections

June 1th, 2007

MUD Simulation

- Individual Drift Tubes, no support, electronics, services
- Gaussian smearing of hits (200µm x 4mm) to make Fastrecpoints (no Cluster Counting yet)
- Pattern recognition through Parallel Kalman Filter
- Standalone Tracker not yet implemented

MUD Performance

• Tracking is working for:

- P_t > 400 MeV
- $|\theta| > 45^{\circ}$ (barrel only)

High momentum tracks resolution:

• $\sigma(1/p_t) = 1.6 \times 10^{-3}$

Very conservative single point resolution used

• Efficiency ($P_t > 6 \text{ GeV}$) = 95%

Finding muons in the midst of jets

$e^+e^- \rightarrow H^0H^0Z^0 \rightarrow 4$ jets 2 muons

E_{cm} = 500 GeV Efficiency (total) = 92%

Conclusions

• Performance of Hadron Calorimeter is good (including pattern recognition) and **INDEPENDENT OF ENERGY**:

 $\sigma_{\rm E}/{\rm E} = 34\%/{\rm VE}$ (single hadrons)

 $\sigma_{\rm E}/{\rm E} = 40\%/\sqrt{{\rm E}}$ (jets – total energy)

- Expected to improve with jet finding (recovery of soft tracks and lost muons)
- Detector optimization not yet started (Culvs Pb, fibers fraction)
- New Dual Readout EMCAL implemented

 $\sigma_{\rm E}/{\rm E} = 5\%/{\rm VE}$ (very preliminary)

- γγ separation from τ decay is very good
- Performance studies under way
- Very high efficiency of muon finding in the midst of 4 jets (Muon ^{Ju}Spectrometer)
 Desy 2007 - C. Gatto