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Outlook

• Concept of the LiCAS-RTRS train

• Opto-geometrical model of the sensing cars

• Idea of the multi-train overlapping measurements

• Simulation and reconstruction software:

– Analytical (matrix) error propagation

– LiCAS Ray-Tracer and Reconstruction

– Monte Carlo approach to error calculations (in progress)

• Single train stop (∼ 20 m) simulation

• Operation along the accelerator tunnel (∼ 100 m)

• Short ruler model (random walk algorithm - extrapolation to ∼ 600 m)

• Fourier analysis of alignment trajectories

• Conclusions
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RTRS: Rapid Tunnel Reference Surveyor in DESY “red-green” tunnel

• Tunnel infrastructure ready (tunnel length 60 m)

• Mechanics (propulsion, control, etc.) of RTRS ready

• Waiting for Invar sensing modules
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LiCAS Invar sensing body of RTRS car

• machining of the LiCAS Invar body for the sensing units

• Invar: alloy of nickel and steel, very small thermal expansion coefficient
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Sensing modules of LiCAS cars

• Important components for the simulation (Laser Straightness Monitor, FSI lines):

– LSM: 1 laser line per train; 2 beam splitters, 4 CCD cameras per car

– Internal FSI: 6 laser lines, 6 retro-reflectors per car
(Internal FSI lines and LSM laser operates in vacuum pipe)

– External FSI: 6 laser lines per car, 1 wall marker in front of each car

– clinometer (not shown) for Rotz
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Multi train overlapping measurement
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• each train stop provides coordinates of N (=6) wall markers expressed in the local frame of the train

• overlapping measurements of each wall marker

• local measurements are combined to coincide on the same trajectory in the global tunnel frame

(simultaneous fit to all measurements)

• top view on two train
stops along the tun-
nel wall



G.G. Simulation of LiCAS error propagation 7

Simulgeo: Software used in the simulation
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• Script language for description of opto-

geometrical systems (light sources, CCD

detectors, distancemeters...)

• Mechanical correlations between objects

grouped in local frames

• ERROR PROPAGATION MODE:

Performs full error propagation

(N 2 matrix, very CPU consuming)

Simulgeo: developed by L. Brunel at CERN

for the alignment of CMS muon chambers

• Optical system (per car): 4 CCDs (4*6 DoF), 6 EXT-FSI (6*3 DoF), 6 INT-FSI (2*6*3 DoF)

• Per train: LSM laser beam (+retro-reflector)

• Extracted: position and rotation of each car (6*6 DoF) and Wall Markers positions (6*3)
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Ray Tracer, Reconstruction and train Monte Carlo

• Ray Tracer: generating (for a given geom-
etry) all CCD, internal and external FSI
measurements

• Running Simulgeo in
RECONSTRUCTION MODE.
Solving the geometry of the system using
provided “experimental” measurements.
(Input from ray-tracer).

• smearing of the measurements with
CCD/FSI resolution, running many train
“journeys” in a loop:
Monte Carlo approach to the propagation
of stat. errors
(next plans: use it to study systematics)
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Single train simulation: Monte Carlo approach

• assuming intrinsic resolutions:

– CCD: σCCD = 1 µm

– FSI: σFSI = 1 µm

• 1000 Simulgeo runs, simplified model, no errors
on calib. const. (INT/EXT-FSI,CCD,BS)

• open markers: Matrix calculation (analytic)
solid markers: Errors from Monte Carlo

A = RotX

B = RotY

C = RotZ
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20 train stops ( = 90 m tunnel section)

• 20 overlapping trains

• train stops are coupled to each other via the (previously measured) wall markers

• results of full
Simulgeo simulation
(error matrix rank
N 2 ∼ 10 0002)

• very CPU consuming !

• fast growth of
transverse errors !
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Short ruler model (or random walk along the tunnel)

ασ

l

σx
z

• two sources of errors (2D case): position (off-set) and direction (angle)

• off-sets and angles are relative to the previous “ruler”
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n – wall marker number, l – effective length of the ruler (here: distance between cars),
errors: σα – angular (∼ 0.1 µrad), σxy – transverse (∼ 0.5 µm), σz – longitudinal (∼ 0.1 µm)
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Extrapolation to 600 m tunnel section (TESLA betatron wavelength)

• extrapolation using random walk model, asymptotic behaviour: σxy,n ∼ n
3
2, σz,n ∼ n

• longitudinal precision promising for dumping rings (∼ 0.2 mm/10 km, stat. errors only)
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Random Walk Monte Carlo: trajectories, fits

• repeating this procedure for many “numerical experiments”...

• trajectories generated from
Random Walk Monte Carlo
using parameters from the
fit to Simulgeo points
(X,Y ) direction

• good news: points along
trajectories are strongly cor-
related (ie.: small ’oscilla-
tions’ observed)

• straight line fits to the Ran-
dom Walk paths for 600 m
tunnel section
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Random Walk Monte Carlo: residua

• well below specification: σx = 500µm, σy = 200µm

• however: only statistical errors included so far

• precision between X – Y can be swapped by changing the marker location (horizontal to vertical position)

• mean deviation from
straight line fits
(X,Y ) direction

• realistic input to sim-
ulations of beam dy-
namics (licas sim)
→ LiCAS Random
Walk Simulation
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Fourier analysis of MC LiCAS trajectories: 600 m tunnel section

• typical example of x,y MC trajectories

• FFT spectra of x,y positions

• FFT spectra of x,y residua
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FFT mean spectra: 600 m tunnel section

• mean FFT spectra of x,y positions
< Amp > @600 m ∼ 200 µm

• mean FFT spectra of x,y residua
< Amp > @600 m ∼ 50 µm
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Fourier analysis of MC LiCAS trajectories: 15 km tunnel section

• typical example of x,y MC trajectories

• FFT spectra of x,y positions

• FFT spectra of x,y residua
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FFT mean spectra: 15 km tunnel section

• mean FFT spectra of x,y positions
< Amp > @15 km ∼ 20 mm

• mean FFT spectra of x,y residua
< Amp > @15 km ∼ 5 mm
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Summary/Plans

• LiCAS technology is capable of surveying the ILC tunnel
to desired accuracy: O(200) µm over 600 m tunnel section

• Reconstruction procedure for wall markers positions using
CCD and FSI readout for single and many train stops was developed

• Spectral analysis of alignment trajectories performed
→ no high frequency oscillations

• Next plans: study systematics errors using Monte Carlo approach

• Demonstrate the train performance in the test tunnel

• Start to work on the next generation of RTRS for XFEL tunnel


