Simulation of LiCAS error propagation

<u>G. Grzelak</u>^{*}, A. Reichold⁺, J. Dale⁺, M. Dawson⁺, J. Green⁺, Y. Han⁺, M. Jones⁺, G. Moss⁺, B. Ottewell⁺, R. Wastie⁺, D. Kämptner[#], J. Prenting[#], M. Schlösser[#]

*University of Warsaw, +University of Oxford, #DESY, Hamburg

International Linear Collider Workshop LCWS07/ILC07, 29 V - 4 VI 2007, DESY

Outlook

- Concept of the LiCAS-RTRS train
- Opto-geometrical model of the sensing cars
- Idea of the multi-train overlapping measurements
- Simulation and reconstruction software:
 - Analytical (matrix) error propagation
 - LiCAS Ray-Tracer and Reconstruction
 - Monte Carlo approach to error calculations (in progress)
- Single train stop ($\sim 20 \, m$) simulation
- Operation along the accelerator tunnel ($\sim 100\,m$)
- Short ruler model (random walk algorithm extrapolation to $\sim 600 \, m$)
- Fourier analysis of alignment trajectories
- Conclusions

RTRS: Rapid Tunnel Reference Surveyor in DESY "red-green" tunnel

- Tunnel infrastructure ready (tunnel length 60 m)
- Mechanics (propulsion, control, etc.) of RTRS ready
- Waiting for Invar sensing modules

- machining of the LiCAS Invar body for the sensing units
- Invar: alloy of nickel and steel, very small thermal expansion coefficient

• Important components for the simulation (Laser Straightness Monitor, FSI lines):

- LSM: 1 laser line per train; 2 beam splitters, 4 CCD cameras per car
- Internal FSI: 6 laser lines, 6 retro-reflectors per car (Internal FSI lines and LSM laser operates in vacuum pipe)
- External FSI: 6 laser lines per car, 1 wall marker in front of each car
- clinometer (not shown) for Rot_z

- each train stop provides coordinates of N (=6) wall markers expressed in the local frame of the train
- overlapping measurements of each wall marker
- local measurements are combined to coincide on the same trajectory in the global tunnel frame (simultaneous fit to all measurements)

- Script language for description of optogeometrical systems (light sources, CCD detectors, distancemeters...)
- Mechanical correlations between objects grouped in local frames
- ERROR PROPAGATION MODE: Performs full error propagation (N² matrix, very CPU consuming)

 ${\rm SIMULGEO}\colon$ developed by L. Brunel at CERN for the alignment of CMS muon chambers

- Optical system (per car): 4 CCDs (4*6 DoF), 6 EXT-FSI (6*3 DoF), 6 INT-FSI (2*6*3 DoF)
- Per train: LSM laser beam (+retro-reflector)
- Extracted: position and rotation of each car (6*6 DoF) and Wall Markers positions (6*3)

Ray Tracer, Reconstruction and train Monte Carlo

- Ray Tracer: generating (for a given geometry) all CCD, internal and external FSI measurements
- Running SIMULGEO in RECONSTRUCTION MODE. Solving the geometry of the system using provided "experimental" measurements. (Input from ray-tracer).
- smearing of the measurements with CCD/FSI resolution, running many train "journeys" in a loop:

Monte Carlo approach to the propagation

of stat. errors

(next plans: use it to study systematics)

20 train stops (= 90 m tunnel section)

- results of full SIMULGEO simulation (error matrix rank $N^2 \sim 10000^2$)
- very CPU consuming !

 fast growth of transverse errors !

• train stops are coupled to each other via the (previously measured) wall markers

- two sources of errors (2D case): position (off-set) and direction (angle)
- off-sets and angles are <u>relative</u> to the previous "ruler"

$$\sigma_{xy,n} = \sqrt{l^2 \sigma_{\alpha}^2 \frac{n(n+1)(2n+1)}{6} + \sigma_{xy}^2 \frac{n(n+1)}{2}}, \quad \sigma_{z,n} = \sqrt{\sigma_z^2 \frac{n(n+1)}{2}}$$

n – wall marker number, l – effective length of the ruler (here: distance between cars), errors: σ_{α} – angular (~ 0.1 μrad), σ_{xy} – transverse (~ 0.5 μm), σ_z – longitudinal (~ 0.1 μm) Extrapolation to 600 m tunnel section (TESLA betatron wavelength)

- extrapolation using random walk model, asymptotic behaviour: $\sigma_{xy,n} \sim n^{\frac{3}{2}}, \ \sigma_{z,n} \sim n$
- longitudinal precision promising for dumping rings ($\sim 0.2 \, mm/10 \, km$, stat. errors only)

Random Walk Monte Carlo: trajectories, fits

- trajectories generated from Random Walk Monte Carlo using parameters from the fit to SIMULGEO points (X, Y) direction
 - good news: points along trajectories are strongly correlated (ie.: small 'oscillations' observed)
 - straight line fits to the Random Walk paths for 600 mtunnel section

• repeating this procedure for many "numerical experiments"...

- mean deviation from straight line fits (X, Y) direction
- realistic input to simulations of beam dynamics (licas_sim)
 → LiCAS Random Walk Simulation

- well below specification: $\sigma_x = 500 \mu m$, $\sigma_y = 200 \mu m$
- however: only statistical errors included so far

• precision between X – Y can be swapped by changing the marker location (horizontal to vertical position)

Fourier analysis of MC LiCAS trajectories: 600 m tunnel section

FFT mean spectra: 600 m tunnel section

Fourier analysis of MC LiCAS trajectories: 15 km tunnel section

FFT mean spectra: $15 \, km$ tunnel section

Summary/Plans

- LiCAS technology is capable of surveying the ILC tunnel to desired accuracy: $\mathcal{O}(200) \, \mu m$ over $600 \, m$ tunnel section
- Reconstruction procedure for wall markers positions using CCD and FSI readout for single and many train stops was developed
- \bullet Spectral analysis of alignment trajectories performed \rightarrow no high frequency oscillations
- Next plans: study systematics errors using Monte Carlo approach
- Demonstrate the train performance in the test tunnel
- Start to work on the next generation of RTRS for XFEL tunnel