Investigation of ECAL Concepts Designed for Particle Flow

Graham W. Wilson, University of Kansas *ILC Calorimetry R&D Review, DESY Hamburg, June 2007*

Outline

- Personnel
- Basic Philosophy
- Principal physics driven design criteria
- Brief orientation to previously reported work
- Highlights of current research
 - Calibration strategies and measuring EM interactions
 - Photon reconstruction and π^0 fitting for jet energy
 - Applying fast timing techniques to ILC ?

Personnel

- Graham Wilson, Faculty
- Carsten Hensel, Postdoc (mostly DØ, no direct funding for ILC)
- David File, Grad student (and EE)
- Shantanu Dikshit, Grad student
- Matt Treaster, Master's student
- Darius Gallagher, Master's student
- Eric Benavidez, UG student
- Jonathan van Eenwyk, UG student
- Stephen Floor, Chris Patrick, Matt Richard (Semester design project students)

Basic Philosophy

- ECAL for an ILC detector will almost certainly be a sampling calorimeter with readout of each individual layer, and fine transverse cell size.
 - Abundance of information.
 - Want best design for physics at a justifiable overall cost.
- Evaluate performance of different approaches to "precision" sampling EM calorimetry.
- Investigate novel ideas, enabled by the typical detector design, and current R&D with potential to deliver new capabilities.
 - Some of the traditional calorimeter design principles may be moot.
- Not currently committed to a particular technology choice: studying both Si and scintillator related issues
 - Interested in participating in test-beam efforts but would like to have adequate resources to make a valued contribution.

Example: frankyaug05

A radially staggered buildable analog calorimeter with exquisite granularity, with no cost optimization using Tungsten. B = 3T. With M. Thomson.

Acknowledgements to N. Graf

R(m) Nlayers X0 Active Cell-size (mm)

EM Barrel 1:2.10100.5Si $2.5 \times 2.5 \times 0.32$ EM Barrel 2:2.13100.5Si $10 \times 10 \times 0.32$ EM Barrel 3:2.16200.5Sc $20 \times 20 \times 2$ HCAL:2.255502.0Sc $40 \times 40 \times 2$

Choices made based on then current R&D work, driven by making a sensible, robust design with aggressive performance and minimizing Silicon area in a GLD-scale detector.

Expect: $\sigma_E / E = 11\% / \sqrt{E}$ at low energy

(W was cheaper in 05..)

50 GeV photon

Principal physics design criteria

• Hermeticity

- Lots of v's from W, Z.
- Sensitivity to some SUSY possibilities critically linked to hermetic design to smallest possible angle.
- Emphasis on electro-magnetic hermeticity.
- Particle Flow
- Design suited to general purpose e⁺e⁻ experiment
 - Particle flow may be the main driver of the overall detector concept, but eg. intrinsic EM resolution should not be forgotten.
 - Eg. fast timing.

EM Resolution Considerations

Want many layers, low cost, compact, excellent granularity

Si-Sc. correlations used to improve resolution. Mechanical design likely to be difficult.

Developing Lab

- Aims:
 - Develop in-situ ability to appreciate technical feasibility of different approaches.
 - Test single planes of detectors well before going to test-beam.
 - Test simulation of particle interactions with matter with available tools.
 - Train and motivate students in research, particularly detectors, DAQ and electronics. (This sells well with NSF ... we need to get them more engaged in ILC science...)

Lab Measurements with Sources and Cosmics

Calibration strategy? Typical detector designs have MANY cells.

- \circ
- Essential physics calibration is ADC \rightarrow \mathbf{O} deposited energy
- In the Si-PM era, $pe \rightarrow ADC$ calibration is \mathbf{O} straightforward (modulo saturation).
- In thin active media, like ECAL Scintillator, \mathbf{O} calibration with sources may be an attractive, high statistics way to deal with non-uniformities, saturation, material thickness etc.
 - Current thinking is centered on procedures which could certainly be carried out during production, and maybe also in situ. (especially if push/pull is realized !)
 - Following plots are data with a conventional PMT setup (self-triggered) aimed at commissioning ability in a well defined setup before going on to applying to technologies suitable for ILC such as thin tiles.
 - Should also investigate time resolution and calibration, and material budget control techniques (also for tracker).
 - Can check low energy EM interaction detector response simulation.

Exploring Calibration Strategies

Bi-207 with Al mylar window: internal conversion electrons.

All plots are data with 5mm BC-408 scintillator.

Absorption peak $\sigma_E/E = 5.5\%$. (intrinsic splitting: 3.3%). Energy scale stat. error of < 0.01% ! Energy loss in upstream material, leads to the 482 keV e⁻ peak overlapping with 570 keV Compton edge (393 keV)

Cs-137

 β_1 : 514 keV endpoint (94.4%) β_2 : 1176 keV endpoint (5.6%)

CO-57 ($t_{1/2}$ =272 d)

10

10

100

200

300

400

ADC counts (0.2pC/count)

Full-energy peak corresponding to 0.1 MIP.

Lower energies (eg. Am-241, 60 keV) with higher full-energy efficiency could be *interesting.* (*Or Pb-loaded scintillator* ...)

Check response to various EM particles

Relativistic electrons

Positrons and gammas

Photon / neutral hadron separation

Use covariance matrix of the energies measured per layer to discriminate photons from neutral hadrons. (H-matrix method initially developed by N. Graf)

Efficiency for 5 GeV γ

Uses SiD-like acme0605 detector (20+10 layers). In the US software framework which promises flexibility in studying various detector designs

Why is probability distribution not uniform ?

Response function is only Gaussian near shower max. Maybe a likelihood approach would have more potential²⁸

Note: more coherence on software frameworks would help somebody like me contribute effectively to LDC, GLD and SiD.

Prompt EM energy component of jets

Prompt pi0 energy sum (generator) Events per bin 420 104 10000_ Entries Mean 19.59 RMS 10.45 350 $Z \rightarrow qq \ (q=u,d,s)$ 300 250 200 150 100 50 0 20 40 60 80 100 Energy (GeV)

Dominated by π^0 's.

Defined as prompt if they are produced within 10 cm of the IP. On average, with 16%/ \sqrt{E} EM energy resolution, the intrinsic EM resolution contribution to the jet energy is 0.71 GeV corresponding to 7.4%/ \sqrt{E} jet.

Can potentially reduce this contribution using π^0 mass constraint. May drive ultra-fine position resolution (eg. MAPS) and/or lead to an option of saving some Silicon layers.

Position resolution from simple fit

Key: measure the shower really well near the conversion point $(\gamma \rightarrow e^+e^-)$

2004 study with 1mm*1mm Si pixels (pre-MAPS I thought this was unbuildable ...) and 42 layers with sampling every 5/7 X_0

Position resolution does indeed improve by a factor of 5 in a realistic 100% efficient algorithm!

Comprehensive study of applying massconstrained fit for π^0 's to improve the energy resolution of the *prompt* EM component of jets

See talk at Valencia meeting for more details. Proof of principle of the intrinsic potential per π^0 .

NOTE: Not only does the resolution improve, the resolution is known per pair

Practical Implementation for Hadronic Events

- 1. Assume perfect pairing of photons to π^0 s.
 - Estimate improvement.
 - Study implications for detector.
- 2. Implement an assignment algorithm which associates sibling photon pairs to parent π^0 s.
 - Now have a first implementation which can probably be improved considerably. Lots of work still to do here.
- 3. Implement in the context of full simulation of a particular detector model.
 - Need to care about photon calibration, resolution functions, purity, efficiency etc. (Clermont-Ferrand group, is working on this aspect for LDC). See P. Gris talk, work by C. Carloganu.

Applying mass-constraint to $Z \rightarrow$ hadrons

Assumes perfect pairing of sibling photons to parent π^0 (currently restrict to prompt π^0 s defined as originating within 10 cm of IP)

Summary on potential with perfect pairing

ECAL Energy Resolution (%)	No fit	Fit (0.5 mrad)	Fit (2 mrad)	Fit (8 mrad)
8.0	8.0	4.9	5.8	6.8
16.0	16.0	9.4	10.7	12.7
32.0	32.0	18.3	19.9	23.4

Table 1: Average normalized fractional energy resolution (%) on the total prompt π^0 energy in light-quark Z events with and without kinematic fitting for different assumptions on the ECAL energy resolution stochastic term, and the di-photon opening angle resolution assuming perfect pairing in the kinematic fit. Errors are less than 0.1%.

Include (vast) combinatorics

 $< n_{\pi 0} > = 8.6$

Same, but vary opening angle resolution

Assignment Algorithm

- Very basic so far. (Snap-shot)
- $E_{\gamma} > 0.1 \text{ GeV}$
- $p_{fit} > 1\%$
- Form $\chi^2_{\text{mass}} = [(m m(\pi^0))/0.07]^2 \rightarrow p_{\text{mass}}$
- Use a discriminant, $D = p_{fit} p_{mass} E_{\pi 0} / \sigma_m$
- Using energy sorted photons, assign photons to pairings if they have the highest D for both photons.
- Unassigned photons, contribute with their normal measured energy.
- Performance may be strongly dependent on the actual combinatorics.
- Have also looked into a more global method of assignment using assignment problem methodology. Currently pondering how to enforce one-to-one assignment, while taking advantage of N³ rather than N! scaling of standard techniques.

Performance

Fraction of prompt π^0 energy correctly fitted, ε_c Fraction of prompt π^0 energy wrongly fitted, ε_W Fraction of prompt π^0 energy unfitted, ε_{WE}

Results (10k Z events)

Fast Timing / Temporal Calorimetry

Idea: time resolution at below the 100 ps level is easily achievable with dedicated detectors. Can it be applied in a useful way in an ILC detector ?

Can TOF help measure neutral hadrons at low p ?

Can help resolving γ/π . (PID by TOF possible – but redundant with dE/dx in a TPC-based detector). Resolve confusion.

HCAL (LDC DOD) TOF

Possible Detectors ?

- State-of-the-art: MCP-PMT, σ_t = 5 ps measured using Cerenkov light in 10mm quartz, K. Inami et al, NIM A 560 (2006) 303.
 Also see emerging "fast-timing" initiatives. (Fritsch, LeDu)
- Cerenkov layers also designed for C-based compensation.
- Ultra-fast scintillator pads with direct-coupled thin B-field tolerant photo-detectors tiled in a few layers through the calorimeter ??
 - Eg. quenched scintillators with FWHM of 400 ps per γ . (BC-422Q)
 - Will do time resolution studies with this.
- RPCs, Peskov
- Scintillating fibers.

Summary

- I believe ILC calorimetry is fertile ground for novel and interesting approaches to full bubble-chamber like reconstruction of events in the context of the PFA approach.
- EM calorimeter contribution to the jet energy resolution can plausibly be considerably improved using π^0 mass constraint.
- Encourage you to help support efforts like this which help build constructively on existing R&D with a view to getting the best physics out of the ILC independent of particular detector technology bias and specific detector design concept.

Backup Slides

Angular Resolution Studies

5 GeV photon at 90°, sidmay05 detector (4 mm pixels, R=1.27m)

Phi resolution of 0.9 mrad *just* using cluster CoG.

=> θ_{12} resolution of 2 mrad is easily achievable for spatially resolved photons.

NB. Previous study (see backup slide), shows that a factor of 5 improvement in resolution is possible at fixed R using longitudinally weighted "track-fit".

Cluster Mass for Photons

Of course, photons actually have a mass of zero.

The transverse spread of the shower leads to a non-zero cluster mass calculated from each cell.

Cluster Mass (GeV)

Use to distinguish single photons from merged π^0 's. Performance depends on detector design (R, R_M , B, cell-size, ...)

NB generator has ISR and beamsstrahlung turned off. Dependence on π^0 energy

$5 GeV \pi^0$

Average improvement factor not highly dependent on energy resolution.

BUT the maximum possible improvements increase as the energy resolution is degraded.

Improvement Ratio Dependence on Energy Resolution

PFA "Dalitz" Plot

Also see: <u>http://heplx3.phsx.ku.edu/~graham/lcws05_slacconf_gwwilson.pdf</u>

"On Evaluating the Calorimetry Performance of Detector Design Concepts", for an alternative detector-based view of what we need to be doing.

On average, photonic energy only about 30%, but often much greater.

γ , π^0 , η^0 rates measured at LEP

		JETSET	HERWIG			
	OPAL	ALEPH [6]	DELPHI [9]	L3 [10–12]	7.4	5.9
photon						
x_E range	0.003 - 1.000	0.018 - 0.450				
N_{γ} in range	16.84 ± 0.86	7.37 ± 0.24				
N_{γ} all x_E	20.97 ± 1.15				20.76	22.65
π^0						
x_E range	0.007 - 0.400	0.025 - 1.000	0.011 - 0.750	0.004 - 0.150		
N_{π^0} in range	8.29 ± 0.63	4.80 ± 0.32	7.1 ± 0.8	8.38 ± 0.67		
N_{π^0} all x_E	9.55 ± 0.76	9.63 ± 0.64	9.2 ± 1.0	9.18 ± 0.73	9.60	10.29
η						
x_E range	0.025 - 1.000	0.100-1.000		0.020 - 0.300		
N_{η} in range	0.79 ± 0.08	0.282 ± 0.022		0.70 ± 0.08		
N_{η} all x_E	0.97 ± 0.11			0.91 ± 0.11	1.00	0.92
$N_{\eta} x_p > 0.1$	0.344 ± 0.030	0.282 ± 0.022			0.286	0.243

Consistent with JETSET tune where 92% of photons come from π^0 's.

Some fraction is non-prompt, from K⁰_S, Λ decay
9.6 π⁰ per event at Z pole

2. π^0 Kinematic Fitting

- For simplicity used the following measured experimental quantities:
 - $\begin{array}{l} E_1 \ (Energy \ of \ photon \ 1) \\ E_2 \ (Energy \ of \ photon \ 2) \\ \psi_{12} \ (3\text{-}d \ opening \ angle \ of \ photons \ 1 \ and \ 2) \end{array}$
- Fit uses
 - 3 variables, $\mathbf{x} = (E_1, E_2, 2(1 \cos \psi_{12}))$
 - a diagonal error matrix

(assumes individual γ 's are completely resolved and measured independently)

• and the constraint equation $m_{\pi 0}^2 = 2 E_1 E_2 (1 - \cos \psi_{12}) = x_1 x_2 x_3$

