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ILC ExperimentILC ExperimentILC ExperimentILC Experiment

Most of the important physics processes to be studied in the ILC
experiment have multi-jets in the final state

Jet energy resolution is the key in the ILC physics
Jets at ILC experiments contain: 

)GeV(/%30/ EEE =σ

p
- Charged particles (~60%) measured by Tracker
- Photons (~30%) by ECAL( ) y
- Neutral hadrons (~10%) by ECAL + HCAL

The world-wide consensus of the performance goal for thep g
jet energy resolution is )GeV(/%30/ EEE =σ
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Fourth Concept Detector (“4Fourth Concept Detector (“4thth”)”)Fourth Concept Detector ( 4Fourth Concept Detector ( 4thth ))

Basic conceptual design: 4 subsystems
• Vertex Detector 20-micron pixels (SiD design)Vertex Detector  20 micron pixels (SiD design)  
• Time Projection Chamber or

Cl C D ift Ch b• CluCou Drift Chamber see F. Grancagnolo’s talk on Drift Chamber

• Double-readout ecal
• Double-readout fiber hcal: scintillation/Čerenkov
• Muon dual-solenoid spectrometer• Muon dual-solenoid spectrometer

see C. Gatto’s talk on calorimetry
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Simulation Reconstruction and Simulation Reconstruction and 
Analysis in IlcRoot FrameworkAnalysis in IlcRoot Framework

CERN architecture (based on Alice’s Aliroot)
Uses ROOT as infrastructure
– All ROOT tools are available (I/O, graphics, PROOF, 

data structure, etc)
– Extremely large community of users/developers

Six MDC have proven robustness, reliability and 
portability
Single framework, from generation to reconstruction 
through simulation. Don’t forget analysis!!!
A il bl t F il bAvailable at Fermilab 



Simulation/Reconstruction StepsSimulation/Reconstruction StepsSimulation/Reconstruction StepsSimulation/Reconstruction Steps

MC Simulation ⇒ Energy Deposits in Detector

Digitization ⇒ Detector response combined

Pattern Recognition ⇒ Recpoints

Track Finding ⇒ Tracks

Track Fitting ⇒ Track Parameters
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SimulationSimulation

Event generators: Pandora-Pythia (moving  to Sherpa)

Full simulation is in place HCAL and ECAL (no gaussian p ( g
smearing nor perfect pattern recognition)

Hits using Fluka MC (for calorimeter studies)g ( )

Cerenkov and Scintillation photon production and 
propagation in the fibers fully simulated. Poisson p p g y
uncertaintity introduced in the number of photon produced

Full SDigits + Digits + Pattern Recognition chain 
i l t d (VXD ECAL d HCAL)implemented (VXD, ECAL and HCAL)

PID implemented for ECAL and HCAL only
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Reconstruction Reconstruction 

Reconstruct  tracks from the tracking 
devices (Kalman Filter)devices (Kalman Filter)
Build Clusters from cells distant no more 
th t tthan two towers away 
Unfold overlapping clusters through a Minuit pp g g
fit to cluster shape (in progress)
Calibration of HCALCalibration of HCAL
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CalibrationCalibrationCalibrationCalibration

Energy of HCAL calibrated in 2 steps:

C lib t ith i l 40 G V1. Calibrate with  single 40 GeV e-

raw EECC and EESSraw EECC and EESS

2. Calibrate with single 40 GeV π−g

ηηCC and ηηSSηηCC ηηSS
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Reconstructed energyReconstructed energyReconstructed energyReconstructed energy

Once HCAL calibrated, calorimeter energy:
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Jets StudiesJets Studies

1010



Jets Performance StudiesJets Performance StudiesJets Performance StudiesJets Performance Studies

ee++ee-- −−>> qqqq generated in Egenerated in Ecmcm = (60, 100, 140, 200, = (60, 100, 140, 200, 
300 500) GeV300 500) GeV300, 500) GeV 300, 500) GeV 
Jets reconstructed with Durham algorithm over Jets reconstructed with Durham algorithm over 
calorimeter cellscalorimeter cells
HCAL Resolutions and Responses from:HCAL Resolutions and Responses from:HCAL Resolutions and Responses from:HCAL Resolutions and Responses from:

jet reconstructed energy (30, 50, 70, 100, 150, 250) jet reconstructed energy (30, 50, 70, 100, 150, 250) 
GeVGeVGeVGeV

very preliminary strategy
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500 GeV dijets events500 GeV dijets events500 GeV dijets events500 GeV dijets events
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30 GeV Jet Resolutions30 GeV Jet Resolutions
hcellJetEResolution
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50 GeV Jet Resolutions50 GeV Jet Resolutions
hcellJetEResolution
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Jet phi resolution (Deg) with cells objects hcellJetThetaResolution
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70 GeV Jet Resolutions70 GeV Jet Resolutions
hcellJetEResolution

Entries  580

Mean   -0.30950

60
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Entries  580
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Jet energy resolution (GeV) with cells objects
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100 GeV Jet Resolutions100 GeV Jet Resolutions
hcellJetEResolution

Entries  1762

Mean   -0.6588
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Entries  1762
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Jet energy resolution (GeV) with cells objects
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Jet Energy ResponseJet Energy ResponseJet Energy ResponseJet Energy Response
 / ndf 2χ  0.01105 / 4 / ndf 2χ  0.01105 / 4Jets Energy Response
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Jet Energy ResolutionJet Energy ResolutionJet Energy ResolutionJet Energy Resolution
 / ndf 2χ  3.054 / 3 / ndf 2χ  3.054 / 3Jets Energy Resolution
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Need to improve jet reconstruction Need to improve jet reconstruction 
strategystrategy

Energy resolution with simple kt algorithm Energy resolution with simple kt algorithm 

l i t ll t ti f tl i t ll t ti f ton calorimeter cells not satisfactory:on calorimeter cells not satisfactory:

-- Wrong direction for tracks bending in theWrong direction for tracks bending in theWrong direction for tracks bending in the Wrong direction for tracks bending in the 
central trackercentral tracker

-- Left muon particles leaving the calorimeter Left muon particles leaving the calorimeter 
d d d k i h l kd d d k i h l kand dead tracks in the central trackerand dead tracks in the central tracker
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500 GeV dijets events500 GeV dijets events500 GeV dijets events500 GeV dijets events
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60 GeV dijets events60 GeV dijets events60 GeV dijets events60 GeV dijets events
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60 GeV dijets events60 GeV dijets eventsjj

7 GeV muon
2323

7 GeV muon



A different  strategyA different  strategy
Look for the jet axis using the Durham algorithm 

Charged tracks 

Calorimeter cells

Jet core
Open a cone increasingly bigger around the jet axis (< 60°)

Add cells in the cones

Jet outliers
Check leftover/isolated calo cluster for match with a track from TPC+VXD

Add isolated tracks and isolated neutral clusters 

Add low Pt tracks not reaching the calorimeter

Muons
Add tracks reconstructed in the MUD

2424

V0’s,  kinks



Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
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Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
Jet axis 1

2626
Jet axis 2



Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
Jet axis 1
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Jet axis 2



Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
Jet axis 1
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Jet axis 2



Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
Jet axis 1

2929
Jet axis 2



Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
Jet axis 1
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Jet axis 2



Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
Jet axis 1
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Jet axis 2



Jet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction StrategyJet Reconstruction Strategy
Jet axis 1

3232
Jet axis 2



Work in progressWork in progressWork in progressWork in progress

very quickly
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ConclusionsConclusions
The 4th Concept has chosen a Calorimeter with Dual 
ReadoutReadout
The technology has been proved at a test beam, but never 
in a real experimentin a real experiment
Performance of Calorimeter  extremely good:

√σE/E = 34%/√E (single particles)

σ /E = 38%/√E (jets)σE/E = 38%/√E (jets) 
There is room to improve these resolutions
D l R d t t l EMCAL t di dDual Readout crystal EMCAL studies are under way
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Backup slidesBackup slidesBackup slidesBackup slides
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HCAL HCAL 
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ILCILCILCILC

electron-positron collider ;

ILC's design consist of twoILC s design consist of two 
facing linear    
accelerators, each 20 
kilometers long;

c.m. energy 0.5 - 1 TeV ;

ILC target luminosity : 

500 fb-1 in 4 years
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Requirements for ILC DetectorsRequirements for ILC DetectorsRequirements for ILC DetectorsRequirements for ILC Detectors

Good jet Good jet energyenergy resolution to separate W and Zresolution to separate W and Z

Efficient jetEfficient jet--flavor identification capabilityflavor identification capability

Excellent chargedExcellent charged--particle momentum resolutionparticle momentum resolution

Hermetic coverage to veto 2Hermetic coverage to veto 2--photon backgroundphoton background
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Detector Design StudyDetector Design Study
D t t D i St dD t t D i St d

Detector Design StudyDetector Design Study
Detector Design StudyDetector Design Study

Conceptual design study of detector systemsConceptual design study of detector systems

4 major concepts: 3 with PFA + 1 with Compensation Calorimetry4 major concepts: 3 with PFA + 1 with Compensation Calorimetryj p p yj p p y

SubSub--detector R&D detector R&D 
More than 80 groups in the world (about 1000 physicist)More than 80 groups in the world (about 1000 physicist)More than 80 groups in the world (about 1000 physicist)More than 80 groups in the world (about 1000 physicist)

Usually related with several detector concepts                         Usually related with several detector concepts                         

Horizontal collaborationHorizontal collaboration
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4th Concept Detector4th Concept Detector4th Concept Detector4th Concept Detector
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Fluka vs G3/G4Fluka vs G3/G4
π- at 50 GeV 
i Pb hin Pb sphere
of 500 cm radius

Geant3

Fluka Geant4
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Fluka vs G3/G4Fluka vs G3/G4Fluka vs G3/G4Fluka vs G3/G4

Geant3Geant3 46.541 GeV46.541 GeV

FlukaFluka 48.074 GeV48.074 GeVFlukaFluka 48.074 GeV48.074 GeV

Geant4 QGSP_BERGeant4 QGSP_BER 45.024 GeV45.024 GeV

Geant4 QGSP_BER_HPGeant4 QGSP_BER_HP 47.791 GeV47.791 GeV
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Present Status: VXD+TPC+DREAMPresent Status: VXD+TPC+DREAM
e+ee+e HoZoHoZo-->qqqq>qqqq
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Hadron CalorimetersHadron CalorimetersHadron CalorimetersHadron Calorimeters
Detectors measuring properties of particles by total 
b ti ( l i t ) i l i HEP i tabsorption (calorimeters) crucial in HEP experiments

Detection of em interacting particles performed with 
high precision

NOT TRUE for particles subject to strong interaction, 
due primarily:

1. Tipically, larger signal per unit Edep for em shower component dep 

(π0       γγ) than for non em component (i.e. e/h >1)

2. Fluctuations in the energy sharing between these 2 
components large and non-Poissonian. 
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Performance GoalPerformance GoalPerformance GoalPerformance Goal
• Jet energy resolution

1/2  w.r.t. LHC
(GeV) /%30/)( jjj EEE =σ

• Impact parameter resolution for flavor tag

m)(sin/105 2/3 μθβσ pIP ⊕=
1/2 resolution term, 1/7 M.S. term w.r.t. LHC

• Transverse momentum resolution for charged particles

)(μβpIP

1/10 momentum resolution w.r.t. LHC

152 (GeV/c) 105/)( −−×=tt ppσ

• Hermeticity

mrad 5min =θ
4646
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Problems in Hadron CalorimetersProblems in Hadron CalorimetersProblems in Hadron CalorimetersProblems in Hadron Calorimeters

Hadronic response function non-Gaussian

Hadronic signals non-linearHadronic signals non-linear

Poor hadronic energy resolution and not scaling 
as E-1\2

E l i d i d b fl iEnergy resolution determined by fluctuations
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The “key” for the solutionThe “key” for the solutionThe key  for the solutionThe key  for the solution

To improve hadronic calorimeter performance

d / li i t th ( ff t f)d / li i t th ( ff t f)reduce/eliminate the (effects of) reduce/eliminate the (effects of) 
fluctuations that dominate the performancefluctuations that dominate the performancepp

1. Fluctuations in the em shower fraction, fem

2. Fluctuations in visible energy (nuclear binding 
energy losses)energy losses)
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Solutions toSolutions to ff fluctuationsfluctuationsSolutions to Solutions to ffem em fluctuationsfluctuations

Several ways to deal with  problem 1:Several ways to deal with  problem 1:
Compensating calorimeterCompensating calorimeter (design to have(design to haveCompensating calorimeter Compensating calorimeter (design to have (design to have 
e/h=1)        fluctuations in e/h=1)        fluctuations in fem eliminated by
designdesign
Off-line compensation (signals from different 
longitudinal sections weighetd)
Measurements of f event by event (throughMeasurements of fem event by event (through 
spatial profile of developing shower)
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Solutions in ILC communitySolutions in ILC communitySolutions in ILC communitySolutions in ILC community
GLDGLD

1. Particle Flow Analysis (PFA)                

calorimeter information combined with

GLDGLD

LDCLDCcalorimeter information combined with     

measurements from tracking system SiDSiD
2. Dual Readout Calorimeter 

t f f l t b t b imeasurement of fem value event by event by comparing 
two different signals from  scintillation light and 
Ĉ

44thth
Ĉerenkov light in the same device             

44
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PFA CalorimetryPFA CalorimetryPFA CalorimetryPFA Calorimetry
• PFA (Particle Flow Analysis) is thought to be a way to 

get best jet-energy resolutiong j gy
• Measure energy of each particle separately

– Charged particle : by tracker
G b EM C l i t– Gamma : by EM Calorimeter

– Neutral hadron : by EM and Hadron Calorimeter
• Overlap of charged cluster and neutral cluster in theOverlap of charged cluster and neutral cluster in the 

calorimeter affects the jet-energy resolution
• Cluster separation in the calorimeter is important 

– Large Radius (R)
– Strong B-field 
– Fine 3-D granularity (σ)Fine 3 D granularity (σ)
– Small Moliere length (RM)
– Algorithm 22

2

σ+R

BR

5151
• Often quoted figure of merit :    σ+MR



PFA Simulation Study at ILCPFA Simulation Study at ILCPFA Simulation Study at ILCPFA Simulation Study at ILC
Z @ 91 18G VZ  qq @ 91.18GeV

E
%60~

E
%38~

E
%60~

CAL energy sum PFA

Unfort natel the stochastic term increases ith energ
5252

Unfortunately, the stochastic term increases with energy



Dual (Triple) Readout CalorimetryDual (Triple) Readout CalorimetryDual (Triple) Readout CalorimetryDual (Triple) Readout Calorimetry
DualDual--Readout:Readout: Measure every shower twice Measure every shower twice ––

in Scintillation light and in Cerenkov light.in Scintillation light and in Cerenkov light.

Spatial fluctuations are huge ~λint with high density EM deposits:  fine 
spatial sampling with scintillating fibers every 2mm

EM fraction fluctuations are huge, 5→95% of total shower energy: insert 
clear fibers generating Cerenkov light by electrons above Eth = 0.25 MeV 
measuring nearly exclusively the EM component of the shower (mostly 
from π0→γγ)

Binding energy (BE) losses from nuclear break-up: measure MeV neutron 
component of shower.
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The C/S methodThe C/S methodThe C/S methodThe C/S method
• Hadronic calorimeter response (C,S) can be expressed with fem and e/h

( )fffR + 11)( ( )ememem f
he

ffR −+= 1
/

)(

• /h d d ti & i l i t di d li f ti• e/h depends on: active & passive calorimeter media and sampling fraction
(e/h)C = ηC ~ 5  for copper/quartz fiber
(e/h)S = ηS ~ 1.4 for copper/plastic-scintillatorS S

• Asymmetry, non-gaussian  & non-linear response are due to fem fluctuation..
• Measurement fem event by event is the key to improve hadronic 

l i tcalorimeter response

( )emem ffC −+= 120.0
5454( )emem ffS −+

=
171.0



Dream Performance (pions)Dream Performance (pions)Dream Performance (pions)Dream Performance (pions)
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Results from DREAM simulation Results from DREAM simulation 
(V. Di Benedetto)(V. Di Benedetto)

S i till ti d C k llScintillation and Cerenkov processes well 
simulated
Easily switch from Cu to W (however, need 
to change calibration values of ηS and ηC)g ηS ηC)
Pattern recognition in place (nearby cells).
Hadronic showers appear to reproduce theHadronic showers appear to reproduce the 
compensation effect seen in the test module 
(Fluka)(Fluka)
PiD (e/π/μ) results are very promising
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Isolated 
Clusters
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Present Status: VXD+TPC+DREAMPresent Status: VXD+TPC+DREAM
e+ee+e HoZoHoZo-->qqqq>qqqq
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(1)(1) M M V t (bi di l ) bM M V t (bi di l ) b titi(1) (1) Measure MeV neutrons  (binding energy losses) by Measure MeV neutrons  (binding energy losses) by time.time.

WTeV ATWD read-out

)

WTeV ATWD read-out

(protons)

en
gt

h 
(c

m
)

Velocity of MeV neutrons is   
~ 0.05 c

WTeV ATWD read-out

Pa
th

le

(1) Scintillation light from  
np→np scatters comes 
l d

WTeV ATWD read-out

late; and,

(2) t fill l

WTeV ATWD read-out

(neutrons) (2)  neutrons fill a larger 
volume
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(2) (2) Measure MeV neutrons  (binding energy losses) byMeasure MeV neutrons  (binding energy losses) by
separate hydrogenous fiberseparate hydrogenous fiber

A hydrogenous scintillating fiber measures proton ionization  A hydrogenous scintillating fiber measures proton ionization  
from npfrom np→np scatters;→np scatters;from npfrom np np scatters;np scatters;

A second scintillating A second scintillating nonnon--hydrogenous fiber measures all hydrogenous fiber measures all 
h d ti l b th d ti l b t tt t f ttt f ttcharged particles, but charged particles, but except except protons from np scatters;protons from np scatters;

This method has the weakness that the neutron component is This method has the weakness that the neutron component is 
the difference of two signals.the difference of two signals.
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(3) (3) Measure MeV neutrons  (binding energy losses) with a Measure MeV neutrons  (binding energy losses) with a 

neutronneutron--sensitive fibersensitive fiber

LithiumLithium--loaded or Boronloaded or Boron--loaded fiber  loaded fiber  (Pacific (Pacific 
Northwest Laboratory has done a lot of work on these)Northwest Laboratory has done a lot of work on these)

Some of these materials are difficult liquidsSome of these materials are difficult liquidsqq

Nuclear processes may be slow compared to 300 ns.Nuclear processes may be slow compared to 300 ns.

But, most direct method we know about.But, most direct method we know about.
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(4) (4) Measure MeV neutrons  (binding energy losses) using Measure MeV neutrons  (binding energy losses) using 

different Birk’s constantsdifferent Birk’s constants

Birk’s constant parameterizes the reduction in Birk’s constant parameterizes the reduction in 
detectable ionization from heavily ionizing particlesdetectable ionization from heavily ionizing particlesdetectable ionization from heavily ionizing particles detectable ionization from heavily ionizing particles 
(essentially due to recombination)(essentially due to recombination)

Use two scintillating fibers with widely different Use two scintillating fibers with widely different 
Birk’s constantsBirk’s constantsBirk s constants.Birk s constants.

Two problems: (i) hard to get a big difference, and Two problems: (i) hard to get a big difference, and 
6565(ii) neutron content depends on the difference of two (ii) neutron content depends on the difference of two 

signalssignals



The Ultimate Calorimetry: The Ultimate Calorimetry: 
Triple fiber and dual crystal Triple fiber and dual crystal 

S ti l fl t ti hS ti l fl t ti h λλ ith hi h d it EMith hi h d it EM

Triple fiber: measure every shower three different ways: “3-in-1 calorimeter”

Spatial fluctuations are huge Spatial fluctuations are huge ~~λλintint with high density EM with high density EM 
deposits:  fine spatial sampling with scintillating fibers every deposits:  fine spatial sampling with scintillating fibers every 
2mm2mm

EM fraction fluctuations are huge 5→95% of total showerEM fraction fluctuations are huge 5→95% of total showerEM fraction fluctuations are huge, 5→95% of total shower EM fraction fluctuations are huge, 5→95% of total shower 
energy:  insert clear fibers generating Cerenkov light by energy:  insert clear fibers generating Cerenkov light by 
electrons above Eelectrons above E = 0 25 MeV measuring nearly exclusively= 0 25 MeV measuring nearly exclusivelyelectrons above Eelectrons above Ethth = 0.25 MeV measuring nearly exclusively = 0.25 MeV measuring nearly exclusively 
the EM component of the shower (mostly from the EM component of the shower (mostly from ππ00→→γγγγ))

6666
Binding energy (BE) losses from nuclear breakBinding energy (BE) losses from nuclear break--up: measure up: measure 
MeV neutron component of shower.MeV neutron component of shower.



DualDual--readout crystal EM sectionreadout crystal EM section
(in front of triple(in front of triple--readout module)readout module)

H lf f ll h d i i h “EM i ” i hH lf f ll h d i i h “EM i ” i hHalf of all hadrons interact in the “EM section” … so it has to Half of all hadrons interact in the “EM section” … so it has to 
be a “hadronic section” also to preserve excellent hadronic be a “hadronic section” also to preserve excellent hadronic 
energy resolution. energy resolution. gygy
DualDual--readout of light in same medium: idea tested at CERN readout of light in same medium: idea tested at CERN 
(2004)   “Separation of Scintillation and Cerenkov Light in an (2004)   “Separation of Scintillation and Cerenkov Light in an 
Optical Calorimeter”, NIM Optical Calorimeter”, NIM A550A550 (2005) 185.(2005) 185.
Use multiple MPCs (probably four, two on each end of Use multiple MPCs (probably four, two on each end of 
crystal) with filterscrystal) with filterscrystal), with filters.crystal), with filters.
Physics gain: excellent EM energy resolution (statistical term Physics gain: excellent EM energy resolution (statistical term 
very small), excellent spatial resolution with small transversevery small), excellent spatial resolution with small transversevery small), excellent spatial resolution with small transverse very small), excellent spatial resolution with small transverse 
crystal size.  (This is what CMS needs …)crystal size.  (This is what CMS needs …)

6767Calorimeter: triple-readout fibers + dual-readout crystals in front



Particle Flow AlgorithmParticle Flow AlgorithmParticle Flow AlgorithmParticle Flow Algorithm

Flow of PFA

1.Photon Finding g
2.Charged Hadron Finding
3 Neutral Hadron Finding3.Neutral Hadron Finding
4.Satellite Hits Finding

*Satellite hits = calorimeter hit cell which does not belongSatellite hits = calorimeter hit cell which does not belong
to a cluster core

6868



DualDual--Readout:Readout: Measure every shower twice Measure every shower twice -- in in 
Scintillation light and in Cerenkov light.Scintillation light and in Cerenkov light.

(e/h)C = ηC ∼ 5      (e/h)S = ηS ~ 1.4( )C ηC ( )S ηS 

C = [ fEM  +  (1 – fEM) / ηC ]  E

S = [ f + ( 1 f ) / η ] ES = [ fEM  +  ( 1 – fEM) / ηS ]  E

C / E  =  1 / ηC +  fEM (1 – 1/ηC)
6969
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More important than good Gaussian response:  More important than good Gaussian response:  DREAM DREAM 
mod le calibrated ith 40 GeV emod le calibrated ith 40 GeV e-- into the centers of each to erinto the centers of each to ermodule calibrated with 40 GeV emodule calibrated with 40 GeV e-- into the centers of each tower into the centers of each tower 

responds linearly to responds linearly to ππ-- and “jets”and “jets” from 20 to 300 GeV.from 20 to 300 GeV.

Hadronic 
e-

linearity may 
be the most 
i t timportant 
achievement 
of dual-of dual
readout 
calorimetry.

7070
Data NIM A537 (2005) 537.



Calorimeric/charged contributionCalorimeric/charged contributionCalorimeric/charged contributionCalorimeric/charged contribution
Jets Core Energy Ratio
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Jet Outliers Charged ContributionJet Outliers Charged ContributionJet Outliers Charged ContributionJet Outliers Charged Contribution
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