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ILC Experiment

Most of the important physics processes to be studied in the ILC

experiment have multi-jets 1n the final state

Jets at ILC experiments contain:
- Charged particles (~60%) measured by Tracker
- Photons (~30%) by ECAL
- Neutral hadrons (~10%) by ECAL + HCAL

The world-wide consensus of the performance goal for the

jet energy resolution 1s




Basic conceptual design: 4 subsystems
 Vertex Detector 20-micron pixels (SiD design)
* Time Projection Chamber or

e CluCou Drift Chamber see F Grancagnolo’s talk on Drift Chamber
* Double-readout ecal

» Double-readout fiber hcal: scintillation/Cerenkov

* Muon dual-solenoid spectrometer

see C. Gatto’s talk on calorimetry




Simulation Reconstruction and
Analysis in licRoot Framework

3 CERN architecture (based on Alice’s Aliroot)
8 Uses ROOT as infrastructure

— All ROQOT tools are available (I/O, graphics, PROOF,
data structure, etc)

— Extremely large community of users/developers

3 Six MDC have proven robustness, reliability and
portability

1 , from generation to reconstruction
through simulation. Don'’t forget analysis!!!

3 Available at Fermilab




MC Simulation = Energy Deposits in Detector

Digitization = Detector response combined

Pattern Recognition = Recpoints

Track Finding = Tracks

Track Fitting = Track Parameters




Simulation

Event generators: Pandora-Pythia (moving to Sherpa)

Full simulation is in place HCAL and ECAL (no gaussian
smearing nor perfect pattern recognition)

Hits using Fluka MC (for calorimeter studies)

Cerenkov and Scintillation photon production and
propagation in the fibers fully simulated. Poisson
uncertaintity introduced in the number of photon produced

Full SDigits + Digits + Pattern Recognition chain
implemented (VXD, ECAL and HCAL)

PID implemented for ECAL and HCAL only




Reconstruction

e Reconstruct tracks from the tracking
devices (Kalman Filter)

e Build Clusters from cells distant no more
than two towers away

e Unfold overlapping clusters through a Minuit
fit to cluster shape (in progress)

e Calibration of HCAL




Calibration

Energy of HCAL calibrated in 2 steps:
1. Calibrate with single 40 GeV e-

2. Calibrate with single 40 GeV 1~




Reconstructed energy

Once HCAL calibrated, calorimeter energy:

E _US'ES'(UC_I)_

HCAL




Jets Studies




Jets Performance Studies

o generated in E_, = (60, 100, 140, 200,
300, 500) GeV

e Jets reconstructed with Durham algorithm over
calorimeter cells

e HCAL Resolutions and Responses from:

e jet reconstructed energy (30, 50, 70, 100, 150, 250)
GeV
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30 GeV Jet Resolutions
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50 GeV Jet Resolutions
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70 GeV Jet Resolutions
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100 GeV Jet Resolutions

Jet energy resolution (GeV) with cells objects heellJetEResolution
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Jets Energy Response 0.01105/4
-0.2349+ 2.776
0.9988 + 0.03378

200

N
>
O
o
N
>
(@)
-
(]
c
L
© 150
)
©
]
]
O
>
S
]
(7))
c
o
(&)
)
o

(o)
o

100 150 200
Jet Energy (GeV)




Jets Energy Resolution

~—~
L
~
L
<
~
c
o
-
=
o
0
&)
4
>
o
—
o
c
L
)
-
(<}
i

x? | ndf
pO0
pl

0.3832+ 0.02771
0.01993 + 0.003248

3.054/3

BJ_I|IIII|IIII|IIII|IIII|III

80 100
Jet Energy (GeV)

120

140

160



Need to improve jet reconstruction

strategy

e Energy resolution with simple kt algorithm
on calorimeter cells not satisfactory:

- Wrong direction for tracks bending in the
central tracker

- Left muon particles leaving the calorimeter
and dead tracks in the central tracker
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60 GeV dijets events
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A different strategy

Look for the jet axis using the Durham algorithm

e Charged tracks
e Calorimeter cells
Jet core
e Open a cone increasingly bigger around the jet axis (< 60°)
e Add cells in the cones
Jet outliers
e Check leftover/isolated calo cluster for match with a track from TPC+VXD
e Add isolated tracks and isolated neutral clusters

e Add low P, tracks not reaching the calorimeter

Muons
e Add tracks reconstructed in the MUD

VO’s, kinks







Jet axis 1
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Jet axis 1
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Jet axis 1
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Jet axis 1
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Jet axis 1
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Jet axis 1
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Conclusions

The 4th Concept has chosen a Calorimeter with Dual
Readout

The technology has been proved at a test beam, but never
In a real experiment

Performance of Calorimeter extremely good:

o:/E = 34%/\/E (single particles)

oc/E = (jets)
There is room to improve these resolutions

Dual Readout crystal EMCAL studies are under way
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| Jets Energy Resolution
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electron-positron collider ;

ILC's design consist of two
facing linear
accelerators, each 20

kilometers long;

c.m. energy 0.5-1TeV;
ILC target luminosity :

500 fb-1 in 4 years

| (6) 2005 Shigen [umazas




= Detectors

e Good jet energy resolution to separate W and Z
e Efficient jet-flavor identification capability
e Excellent charged-particle momentum resolution

e Hermetic coverage to veto 2-photon background




Detector Design Study
e Detector Design Study

e Conceptual design study of detector systems

e 4 major concepts: 3 with PFA + 1 with Compensation Calorimetry

e Sub-detector R&D
e More than 80 groups in the world (about 1000 physicist)

e Usually related with several detector concepts

=» Horizontal collaboration







Fluka vs G3/G4




Fluka vs G3/G4

46.541 GeV

Geant4 QGSP_BER

45.024 GeV

Geant4 QGSP_BER HP

47.791 GeV




Present Status: VXD+TPC+DREAM
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Hadron Calorimeters

Detectors measuring properties of particles by total
absorption (calorimeters) crucial in HEP experiments

Detection of em interacting particles performed with
high precision

NOT TRUE for particles subject to strong interaction,

due primarily:

Tipically, larger signal per unit E,., for em shower component
(7% — yy) than for non em component (i.e. e/h >1)

Flugtuations in the energy sharing between these 2
components large and non-Poissonian.




Performance Goal

Jet energy resolution
0(E;)/E;=30%//E, (GeV)
= 1/2 w.r.t. LHC

Impact parameter resolution for flavor tag

O, =5®10/ pBsin’" @ (um)

=» 1/2 resolution term, 1/7 M.S. term w.r.t. LHC
Transverse momentum resolution for charged particles
o(p)/p, =5%x10" (GeV/c)™
=» 1/10 momentum resolution w.r.t. LHC
Hermeticity

6 . =35mrad

m




e Hadronic response function non-Gaussian
e Hadronic signals non-linear

e Poor hadronic energy resolution and not scaling
as E-12

LESSONS FROM 25 YEARS OF R&D

Energy resolution determined by fluctuations




To improve hadronic calorimeter performance

1. Fluctuations in the em shower fraction, f,

2. Fluctuations in visible energy (nuclear binding
energy losses)




Solutions to f_ ., fluctuations

Several ways to deal with problem 1:

Compensating calorimeter (design to have
e/h=1) _ fluctuations in 1, eliminated by
design

Off-line compensation (signals from different
longitudinal sections weighetd)

Measurements of f_, event by event (through
spatial profile of developing shower)



Solutions in ILC community

1. Particle Flow Analysis (PFA)

calorimeter information combined with

measurements from tracking system
Dual Readout Calorimeter

measurement of f_ value event by event by comparing

two different signals from scintillation light and
Cerenkov light in the same device




PFA Calorimetry

PFA (Particle Flow Analysis) is thought to be a way to
get best jet-energy resolution

Measure energy of each particle separately
Charged particle : by tracker
Gamma : by EM Calorimeter
Neutral hadron : by EM and Hadron Calorimeter

Overlap of charged cluster and neutral cluster in the
calorimeter affects the jet-energy resolution

Cluster separation 1n the calorimeter is important
Large Radius (R)
Strong B-field
Fine 3-D granularity (o)
Small Moliere length (R,,)
Algorithm

Often quoted figure of merit :




PFA Simulation Study at ILC
Z »qq @ 91.18GeV

| Sum up CAL energy | hist1 | Particle Flow Algorithm |
[ Entries 2000 50 Entries 2058
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RMS 6.486 | RMS 4.584
Constant 1,269e+04 + 37 - ’ Constant  305+7.7
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ST PERN . R P B T
90 100 110 120 130 140 GeV
Energy (GeV) energy(GeV)

CAL energy sum

Unfortunately, the stochastic term increases with energy




Measure every shower twice —
in Scintillation light and in Cerenkov light.

e Spatial fluctuations are huge ~A. . with high density EM deposits: fine

1nt

spatial sampling with scintillating fibers every 2mm

EM fraction fluctuations are huge, 5—95% of total shower energy: insert
clear fibers generating Cerenkov light by electrons above E,;, = 0.25 MeV
measuring nearly exclusively the EM component of the shower (mostly

from n%—yy)

Binding energy (BE) losses from nuclear break-up: measure MeV neutron

component of shower.




The C/S method

* Hadronic calorimeter response (C,S) can be expressed with f__ and e/h

1
R(f, )=1_+—(1-f
( em) em e/h( em)

* e/h depends on: active & passive calorimeter media and sampling fraction
(e/h)c =nc ~ 5 for copper/quartz fiber
(e/h)s = ng ~ 1.4 for copper/plastic-scintillator
* Asymmetry, non-gaussian & non-linear response are due to fem fluctuation..
* Measurement f_, event by event is the key to improve hadronic
calorimeter response

c f,+0.200-f,)
S f_+0.71(1-f_)
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e Scintillation and Cerenkov processes well
simulated

e Easily switch from Cu to W (however, need
to change calibration values of ng and n)

e Pattern recognition in place (nearby cells).

e Hadronic showers appear to reproduce the

compensation effect seen in the test module
(Fluka)

e PiD (e/n/u) results are very promising




Histos electrons at 40 GeV in Cu
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Histos pions at 40 GeV in Cu
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Energy read from Scint fibers (GeV)
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Histos muons at 100 GeV in Cu
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Present Status: VXD+TPC+DREAM

File Dptions Yiew Help

Ole] il o] of miml =[<m|

ILC
Event Display

.
i) ‘
Povwered by
ILCRoot

All wigws 1 Ma detecmr1

Event numher 0|
Mb Paricles 371
Mb Hits 145980
Mb Clusters -
Mb DREAR Clusters —-
kb TRD Clusters -

Event

Wieny

ete>HoZo->qqqq

Detectors

Rapidity s

Il Dizplay
L

Dptions U ] D_%j

| neutran




~
=
&)
N’
=
N
en
o=
=
=
=
S
A

WTeV ATWD read-out

pStep(t)

Entries
Mean
RMS

194
1772041
14.39
10.65

195
85479159
45.53
25.67

Velocity of MeV neutrons is
~0.05c¢

(1) Scintillation light from
np—np scatters comes
late; and,

(2) neutrons fill a larger
volume




e A hydrogenous scintillating fiber measures proton 1onization

from np—np scatters;

e A second scintillating non-hydrogenous fiber measures all

charged particles, but




e Lithium-loaded or Boron-loaded fiber (Pacific

Northwest Laboratory has done a lot of work on these)

e Some of these materials are difficult liquids

e Nuclear processes may be slow compared to 300 ns.

e But, most direct method we know about.




e Birk’s constant parameterizes the reduction in
detectable 1onization from heavily 1onizing particles

(essentially due to recombination)

e Use two scintillating fibers with widely different

Birk’s constants.

e Two problems: (1) hard to get a big difference, and

(1) neutron content depends on the difference of twas




The Ultimate Calorimetry:

Triple fiber and dual crystal

Triple fiber: measure every shower three different ways: “3-in-1 calorimeter”

with high density EM

deposits: fine spatial sampling with scintillating fibers every

e Spatial fluctuations are huge ~A

nt

A 4LV

energy: 1nsert clear fibers generating Cerenkov light by
electrons above E;, = 0.25 MeV measuring nearly exclusively

the EM component of the shower (mostly from ©%—yy)

e Binding energy (BE) losses from nuclear break-up: measure

66

MeV neutron component of shower.




Half of all hadrons interact in the “EM section™ ... so 1t has to
be a “hadronic section” also to preserve excellent hadronic
energy resolution.

Dual-readout of light in same medium: idea tested at CERN
(2004) ““Separation of Scintillation and Cerenkov Light in an
Optical Calorimeter”, NIM A550 (2005) 185.

Use multiple MPCs (probably four, two on each end of

e A I a1l OV
Crystal), witll 1LCLS.

Physics gain: excellent EM energy resolution (statistical term
very small), excellent spatial resolution with small transverse
crystal size. (This 1s what CMS needs ...)




Flow of PFA

1.Photon Finding

2.Charged Hadron Finding
3.Neutral Hadron Finding
4. Satellite Hits Finding

*Satellite hits = calorimeter hit cell which does not belong
to a cluster core




Measure every shower twice - in

Scintillation light and 1n Cerenkov light.

(¢/h)c =Mc~5  (e/h)g =mg~ 1.4

C=[tpy + (I -fgw)/Mc] E
S=[1tpgm + (1 -1fgy)/Mg] E

mep C/E = 1/m¢ + fop (1 -1Mp)

Data NIM A537 (2005) 537.
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