Magnetic moment $(g - 2)_{\mu}$ and SUSY

Dominik Stöckinger

Glasgow

LCWS07, Hamburg, June 2007

Dominik Stöckinger

 $\triangleleft \square \triangleright \triangleleft \square \triangleright$ Magnetic moment $(g-2)_{\mu}$ and SUSY

(g-2): Magnetic Moment of the Muon

3.4 σ deviation from SM-prediction!

< \square > < \square > < \square > < \blacksquare > < \blacksquare > = > \square Magnetic moment $(g-2)_{\mu}$ and SUSY

э

1 A 3σ deviation has been definitely established

SUSY can explain this deviation

3 Campaign for new, better measurement

4 Conclusions

< 同 > < 三 > < 三 >

Outline

A 3 σ deviation has been definitely established

- 2 SUSY can explain this deviation
- 3 Campaign for new, better measurement

4 Conclusions

Era of the Brookhaven experiment — current status

• Experiment:

- 2001–2006: very stable development
- final error: 6×10^{-10} , still statistics dominated

• SM Theory:

- 2002: one sign error corrected in hadronic LbL contributions
- problems with τ -decay data: hardly used any more
- apart from that: SM theory prediction very stable as well, precision of a_{μ}^{had} increases as better $e^+e^- \rightarrow$ hadron data become available (CMD-II, SND, KLOE, B-factories, ...)

< 同 > < 三 > < 三 >

Era of the Brookhaven experiment — current status

Very recently: spectacular progress

new SM evaluations, based on new exp data for a_{μ}^{had} .

$$a_{\mu}(\mathsf{Exp} ext{-SM}) = \left\{ egin{array}{ccc} [HMNT06] & 28(8) \ [DEHZ06] & 28(8) \ [FJ07] & 29(9) \ [MRR07] & 29(8) \end{array}
ight\} imes 10^{-10}$$

better agreement between evaluations, more precise, larger deviation from exp than ever before $\downarrow\downarrow$ 3σ deviation has now been definitely established

/□ ▶ < 글 ▶ < 글

Outline

A 3σ deviation has been definitely established

SUSY can explain this deviation

3 Campaign for new, better measurement

Conclusions

Two questions:

Could SUSY be the origin of the $(28 \pm 8) \times 10^{-10}$ deviation?

Which restrictions on SUSY follow from (e.g. 3σ band)

 $3 \times 10^{-10} < a_{\mu}^{\rm SUSY} < 51 \times 10^{-10}$?

< ロ > < 同 > < 回 > < 回 > < □ > <

э.

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\text{SUSY}} \approx \frac{\alpha}{\pi 8 s_{W}^{2}} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^{2}}{M_{\text{SUSY}}^{2}}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

• $\propto \tan\beta \operatorname{sign}(\mu)$

 $\odot \propto 1/M_{\rm SUSY}^2,$ but complicated dependence on individual masses

(日)

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\text{SUSY}} \approx \frac{\alpha}{\pi 8 s_W^2} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

e.g. $a_{\mu}^{\rm SUSY} = 24 \times 10^{-10}$ for

$$\begin{array}{ll} \tan\beta=2, & M_{\rm SUSY}=100~{\rm GeV}\\ \tan\beta=50, & M_{\rm SUSY}=500~{\rm GeV} \end{array} (\mu>0) \end{array}$$

 \Rightarrow SUSY could easily be the origin of the observed deviation!

Dominik Stöckinger

Magnetic moment $(g - 2)_{\mu}$ and SUSY

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\rm SUSY}$

$$a_{\mu}^{\text{SUSY}} \approx \frac{\alpha}{\pi 8 s_W^2} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

e.g. $a_{\mu}^{\rm SUSY} = -96 \times 10^{-10}$ for

 $\tan \beta = 50$, $M_{\rm SUSY} = 250~{
m GeV}$ ($\mu < 0$)

 \Rightarrow such parameter points are ruled out by $a_{\mu}!$

Dominik Stöckinger

э

Answers:

SUSY could be the origin of the observed $(28 \pm 8) \times 10^{-10}$ deviation!

 a_{μ} significantly restricts the SUSY parameters

ightarrow generically, positive μ , large tan β /small $M_{\rm SUSY}$ preferred

э.

Alternatives to SUSY?

Generic BSM physics at M_{NP}:

$$a_\mu^{NP} \sim 1 imes 10^{-10} \left(rac{300 {
m GeV}}{M_{NP}}
ight)^2$$

much too small! Two advantages of SUSY:

- $\tan \beta$ -enhancement
- Iow SUSY masses possible

э

Example for "typical" behaviour

benchmark point SPS1a

$$a_{\mu}(\text{SUSY, SPS1a}) = 29.8(3.1) \times 10^{-10}$$
 [DS '06]

$$a_\mu(\mathsf{Exp.}-\mathsf{SM}) = 29.5(8.8) imes 10^{-10}$$
 [Miller, de Rafael, Roberts '07]

 $M_W(SPS1a) = 80.381(18) \text{ GeV} \ M_W(Exp.) = 80.398(25) \text{ GeV}$

[Heinemeyer, Hollik, DS, Weber, Weiglein '06]

[CDF, LEPEWWG '07]

Agreement with experiment? very good!

э

Numerical results

"aggressive": require a_{μ}^{SUSY} within 2σ band [Byrne,Kolda,Lennon '02] \Rightarrow upper mass bounds on four lightest sparticles

Dominik Stöckinger

Magnetic moment $(g - 2)_{\mu}$ and SUSY

Numerical results

Summary: scan for tan
$$\beta = 50$$
, all parameters $< 3 \text{ IeV}$ [Ds '06]
 $m_{\tilde{\mu},\tilde{\nu}}$ arbitrary all data
 $m_{\tilde{\mu},_2}, m_{\tilde{\nu}_\mu} > 1 \text{ TeV}$

SUSY contributions in the observed range for low M_{SUSY} !

-∢ ∃ >

< < >> < <</>

Outline

1 A 3σ deviation has been definitely established

2 SUSY can explain this deviation

3 Campaign for new, better measurement

Conclusions

Potential of improved measurement

- new Brookhaven experiment proposed and feasible
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9) \times 10^{-10}$ [Roberts, DS, et al 07]

Would be of tremendous importance as a complement of LHC
Constrain SUSYMeasure $\tan \beta$ (case SPS1a)

Potential of improved measurement

- new Brookhaven experiment proposed and feasible
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9) \times 10^{-10}$ [Roberts, DS, et al 07]

Would be of tremendous importance as a complement of LHC

Distinguish SUSY and UED

$$egin{aligned} a^{
m SUSY}_{\mu} &= 29.8 imes 10^{-10} \ a^{
m UED}_{\mu} &= -1.3 imes 10^{-10} \end{aligned}$$

Measure tan β (case SPS1a)

< 同 > < 三 > < 三 >

Muon (g-2) and the ILC

- *a_µ* prefers small SUSY (chargino, smuon) masses
 → very promising for ILC
- Both the ILC and a future (g − 2) experiment are complementary to the LHC but also to each other (e.g. independent determinations of tan β (→ universality?))

 \rightarrow we should want both experiments

 \rightarrow and there should be no competition between them

Outline

1) A 3σ deviation has been definitely established

- 2 SUSY can explain this deviation
- 3 Campaign for new, better measurement

4 Conclusions

Conclusions

• Experiment finalized, SM prediction has recently improved (and will further improve!)

$$a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = (28\pm8) imes10^{-10} ~~~$$
3.4 σ

- Case for new physics below the TeV scale gets stronger!
- SUSY with low mass scale $\sim 200\dots 600~\text{GeV}$ fits very well and large parameter regions already excluded
- Future, more precise measurements very important and promising!