New SUSY predictions for the ILC

Sven Heinemeyer, IFCA (Santander)

DESY, 06/2007

based on collaborations with J. Ellis, K. Olive, A.M. Weber and G. Weiglein

- 1. Motivation and models
- 2. The observables
- 3. Implications for the ILC
- 4. Conclusions

1. Motivation and models

What do we know about the SUSY mass scale?

- 1. Coupling constant unification $\Rightarrow M_{SUSY} \approx 1 \text{ TeV}$
- 2. LSP should be cold dark matter $\Rightarrow M_{SUSY} \lesssim 1 \text{ TeV}$
- 3. Indirect hints from existing data?
 - Focus on CMSSM, NUHM, ...
 small number of free parameters
 - hard constraint: LSP gives right amount of cold dark matter CMSSM: only thin strips allowed in the $m_{1/2}$ – m_0 plane NUHM: M_A –tan β planes possible
 - Use existing data of M_W , $\sin^2 \theta_{\rm eff}$, ${\sf BR}(b \to s\gamma)$, $(g-2)_{\mu}$, $M_h \Rightarrow \chi^2$ fit with these observables

 \Rightarrow best fit values for masses, couplings, . . .

1. Motivation and models

What do we know about the SUSY mass scale?

- 1. Coupling constant unification $\Rightarrow M_{SUSY} \approx 1 \text{ TeV}$
- 2. LSP should be cold dark matter $\Rightarrow M_{SUSY} \lesssim 1 \text{ TeV}$
- 3. Indirect hints from existing data?
 - Focus on CMSSM, NUHM, ...
 small number of free parameters
 - hard constraint: LSP gives right amount of cold dark matter CMSSM: only thin strips allowed in the $m_{1/2}$ – m_0 plane NUHM: M_A –tan β planes possible
 - Use existing data of M_W , $\sin^2 \theta_{\text{eff}}$, $\text{BR}(b \to s\gamma)$, $(g-2)_{\mu}$, M_h new observables: Γ_Z , $\text{BR}(B_s \to \mu^+ \mu^-)$, $\text{BR}(B_u \to \tau \nu_{\tau})$, ΔM_{B_s} $\Rightarrow \chi^2$ fit with all of these observables
 - \Rightarrow best fit values for masses, couplings, . . .

Precision Observables (POs):

Comparison of electro-weak precision observables with theory:

EW Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, a_\mu$$
Theory:
SM, MSSM , ... \downarrow

Test of theory at quantum level: Sensitivity to loop corrections

Very high accuracy of measurements and theoretical predictions needed

- Which model fits better?
- Does the prediction of a model contradict the experimental data?

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., G. Weiglein '03]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

Example: Prediction for M_W in the SM and the MSSM : [S.H., G. Weiglein '04]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

Example: Prediction for M_W in the SM and the MSSM : [S.H., G. Weiglein '05]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

Example: Prediction for M_W in the SM and the MSSM : [S.H., G. Weiglein '06]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

[S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '06]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

 $\frac{\text{SM band:}}{\text{variation of } M_H^{\text{SM}}}$

[S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '06]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

[S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '06]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

 $\begin{array}{l} {\rm SM \ band:} \\ {\rm variation \ of} \ M_{H}^{\rm SM} \end{array}$

[S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

 $\frac{\text{SM band:}}{\text{variation of } M_H^{\text{SM}}}$

[S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '06]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

 $\frac{\text{SM band:}}{\text{variation of } M_H^{\text{SM}}}$

2. The SUSY models

1.) CMSSM (or mSUGRA):

 \Rightarrow Scenario characterized by

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$ m_0 : universal scalar mass parameter at the GUT scale $m_{1/2}$: universal gaugino mass parameter A_0 : universal trilinear coupling $\tan \beta$: ratio of Higgs vacuum expectation values $sign(\mu)$: sign of supersymmetric Higgs parameter

 \Rightarrow particle spectra from renormalization group running to weak scale Lightest SUSY particle (LSP) is the lightest neutralino

2. The SUSY models

 \Rightarrow particle spectra from renormalization group running to weak scale Lightest SUSY particle (LSP) is the lightest neutralino

2.) NUHM: (Non-universal Higgs mass model)

\Rightarrow besides the CMSSM parameters
M_A and μ

Assumption:

no unification of scalar fermion and scalar Higgs parameters at the GUT scale

 \Rightarrow effectively M_A and μ free parameters at the EW scale

 \Rightarrow particle spectra from renormalization group running to weak scale

Lightest SUSY particle (LSP) is the lightest neutralino

```
\Rightarrow possible: M_A-tan \beta planes :-)
```

Procedure:

- 1. Scan over parameter space:
 - CMSSM: for fixed $\tan \beta = 10,50$
 - NUHM: certain parameter planes, corresponding to CMSSM best fit points
- 2. Perform χ^2 fit
- 3. Find preferred values for masses \Rightarrow collider reach

⇒ most details for CMSSM NUHM shows the same qualitative behavior

3. The observables

1./2./3.) M_W , $\sin^2 \theta_{\text{eff}}$, Γ_Z :

1.) Theoretical prediction for M_W in terms

of
$$M_Z, \alpha, G_\mu, \Delta r$$
:

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} (1 + \Delta r)$$
loop corrections

2.) Effective mixing angle:

$$\sin^2 heta_{\mathrm{eff}} = rac{1}{4 \left| Q_f
ight|} \left(1 - \mathrm{Re} rac{g_V^f}{g_A^f}
ight)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

3.) Total Z width:

$$\Gamma_Z = \sum_X \Gamma(Z \to X\bar{X})$$

including higher-order corrections

Sven Heinemeyer, LCWS07, DESY, 02.06.2007

Prediction for $\sin^2 \theta_{eff}$ in the SM and the MSSM : [S.H., W. Hollik, A.M. Weber, G. Weiglein '07]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

Prediction for M_W and $\sin^2 \theta_{\text{eff}}$ in the SM and the MSSM : [S.H., W. Hollik, A.M. Weber, G. Weiglein '07]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

 $\begin{array}{l} {\rm SM \ band:} \\ {\rm variation \ of \ } M_{H}^{\rm SM} \end{array}$

For χ^2 fit:

$$\chi_x^2 = \left(\frac{R_x^{\text{exp}} - R_x^{\text{theo}}}{\sigma_x}\right)^2 \qquad x = M_W, \sin^2 \theta_{\text{eff}}, \Gamma_Z$$

 R_x^{exp} : experimental value

 R_x^{theo} : theory prediction

$$\sigma_x^2$$
: (exp. error)² + (param. error)² + (intr. error)²

experimental error

parametric error: from uncertainty in input parameters intrinsic error: from unknown higher-order corrections

⇒ use most up to date calculations and error estimates [S.H., W. Hollik, G. Weiglein '04] [S.H., W. Hollik, D. Stöckinger, A.M. Weber, G. Weiglein '06/'07] [LEPEWWG '06/'07]

4.) anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Overview about the current experimental and SM (theory) result: [g-2 Collaboration, hep-ex/0401008]

 \rightarrow "Isospin breaking effects" in τ data problematic

[Ghozzi, Jegerlehner '03; Jegerlehner '07]

 e^+e^- data: good agreement between new SND, CMD2, KLOE data

 $a_\mu^{\mathsf{exp}} - a_\mu^{\mathsf{theo},\mathsf{SM}} pprox$ (27.5 \pm 8.4) imes 10⁻¹⁰

Scan over $m_{1/2}$, m_0 , A_0 tan $\beta = 10,50$ selected points give correct amount of cold dark matter

[Ellis, S.H., Olive, Weiglein '04]

Severe bounds on e.g. $m_{1/2}$

 R_x^{exp}

 R_x^{theo}

$$\chi_x^2 = \left(\frac{R_x^{\exp} - R_x^{\text{theo}}}{\sigma_x}\right)^2 \qquad x = (g-2)_{\mu}$$

$$R_x^{\exp}: \text{ experimental value} = (a_{\mu}^{\exp} - a_{\mu}^{\text{theo},\text{SM}})$$

$$R_x^{\text{theo}}: \text{ theory prediction} = a_{\mu}^{\text{theo},\text{SUSY}}$$

$$\sigma_x^2: (\exp. \text{ error})^2 + (\text{param. error})^2 + (\text{intr. error})^2$$
experimental error
parametric error: from uncertainty in input parameters

intrinsic error: from unknown higher-order corrections

 \Rightarrow use most up to date calculations and error estimates [S.H., W. Hollik, G. Weiglein '04] [S.H., D. Stöckinger, G. Weiglein '03,'04] [g-2 Collaboration, hep-ex/0401008]

5.) the lightest MSSM Higgs boson mass: M_h

Contrary to the SM: M_h is not a free parameter

MSSM tree-level bound: $M_h < M_Z$, excluded by LEP Higgs searches

Large radiative corrections:

Dominant one-loop corrections:

$$\Delta M_h^2 \sim G_\mu m_t^4 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector) f

Measurement of M_h , Higgs couplings \Rightarrow test of the theory

LHC: $\Delta M_h \approx 0.2 \text{ GeV}$ ILC: $\Delta M_h \approx 0.05 \text{ GeV}$

 $\Rightarrow M_h$ will be (the best?) electroweak precision observable

In CMSSM, NUHM: SM bound of M_H search can be used [LEP Higgs Working Group '03]

 CL_s can be used/transformed into χ^2 values

 \Rightarrow additional (unobserved) parameter

 $\delta M_h^{\rm intr.} pprox 3 {
m GeV}$

We use *FeynHiggs*

$\mathsf{BR}(b \rightarrow s\gamma)$ MSSM vs. SM (CMSSM)

Sven Heinemeyer, LCWS07, DESY, 02.06.2007

$BR(B_s \rightarrow \mu^+ \mu^-) CMSSM$

Sven Heinemeyer, LCWS07, DESY, 02.06.2007

$BR(B_u \rightarrow \tau \nu_{\tau}) MSSM/SM (CMSSM)$

ΔM_{B_s} MSSM/SM (*CMSSM*)

Sven Heinemeyer, LCWS07, DESY, 02.06.2007

For χ^2 fit:

$$\chi_x^2 = \left(\frac{R_x^{\exp} - R_x^{\text{theo}}}{\sigma_x}\right)^2$$

$$x = b \to s\gamma, B_s \to \mu^+ \mu^-, B_u \to \tau \nu_\tau, \Delta M_{B_s}$$

 R_x^{exp} : experimental value

 R_x^{theo} : theory prediction

 σ_x^2 : (exp. error)² + (param. error)² + (intr. error)²

experimental error

parametric error: from uncertainty in input parameters intrinsic error: from unknown higher-order corrections

⇒ use up to date calculations and error estimates
[BaBar, Belle '04 - '07]
[HFAG '07]

4. Implications for the ILC

What do we know about the SUSY mass scale?

- 1. Coupling constant unification $\Rightarrow M_{SUSY} \approx 1 \text{ TeV}$
- 2. LSP should be cold dark matter $\Rightarrow M_{SUSY} \lesssim 1 \text{ TeV}$
- 3. Indirect hints from existing data?
 - Focus on CMSSM and NUHM
 small number of free parameters
 - hard constraint: LSP gives right amount of cold dark matter CMSSM: only thin strips allowed in the $m_{1/2}$ – m_0 plane NUHM: M_A –tan β planes possible
 - Use existing data of M_W , $\sin^2 heta_{
 m eff}$, Γ_Z , $(g-2)_\mu$, M_h

 $\mathsf{BR}(b \to s\gamma)$, $\mathsf{BR}(B_s \to \mu^+ \mu^-)$, $\mathsf{BR}(B_u \to \tau \nu_{\tau})$, ΔM_{B_s}

 $\Rightarrow \chi^2$ fit with these observables

 \Rightarrow best fit values for masses, couplings, . . .

Results: CMSSM: EWPO alone

 \Rightarrow preference for relatively small $m_{1/2}$

Results: CMSSM: BPO alone

 \Rightarrow preference for relatively <u>large</u> $m_{1/2}$

Results: CMSSM: everything combined

 \Rightarrow preference for somewhat smallish $m_{1/2}$ – but with a little tension

Results: CMSSM: prediction for M_h

⇒ preference for $M_h \sim 115$ GeV (LEP ...) ⇒ ILC implications obvious

 \Rightarrow much "better" than in the SM

Results: CMSSM: prediction for $m_{\tilde{\chi}_1^0} \approx m_{\tilde{\chi}_1^\pm}$

 $\tan \beta = 10 \Rightarrow \text{accessible at ILC}(500)$

 $\tan \beta = 50 \Rightarrow \text{accessible at ILC(1000), possibly } e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$

Sven Heinemeyer, LCWS07, DESY, 02.06.2007

Results: CMSSM: prediction for $m_{\tilde{\tau}_1}$

 $\tan \beta = 10 \Rightarrow \text{accessible at ILC(500)}$ $\tan \beta = 50 \Rightarrow \text{accessible at ILC(1000)}$

Results: CMSSM: prediction for M_A

 $\tan \beta = 10 \Rightarrow \text{possibly too heavy}$

 $\tan \beta = 50 \Rightarrow$ possibly too heavy \Rightarrow check single production!

Results: CMSSM: prediction for $m_{\tilde{t}_1}$

 $\tan \beta = 10 \Rightarrow \text{possibly too heavy}$

- $\tan\beta = 50 \Rightarrow$ definitively too heavy
- \Rightarrow other colored particles even heavier \Rightarrow LHC/ILC complementarity!

Results: NUHM

 M_A -tan β planes in agreement with CDM \Rightarrow 4 planes; with $m_{1/2}$ or μ varied to get CDM right (interesting as benchmark scenarios?)

What about other constraints? \rightarrow see the χ^2

 \Rightarrow good χ^2 , larger regions o.k.

 \Rightarrow good χ^2 , larger regions o.k.

Results: NUHM

 M_A -tan β planes in agreement with CDM \Rightarrow 4 planes; with $m_{1/2}$ or μ varied to get CDM right (interesting as benchmark scenarios?)

What about other constraints? \rightarrow see the χ^2

Phenomenology on these planes?

so far only the lightest Higgs has been investigated $\Rightarrow M_h \lesssim 125~{\rm GeV},~{\rm SM-like~couplings}$

5. Conclusinos

- Precision observables
 - can give valuable information about the "true" Lagrangian
 - can provide bounds on SUSY parameter space
- Most important electroweak precision observables: M_W , $\sin^2 \theta_{\text{eff}}$, Γ_Z , M_h , $(g-2)_\mu$

Most important B physics observables:

 $\mathsf{BR}(b \to s\gamma)$, $\mathsf{BR}(B_s \to \mu^+ \mu^-)$, $\mathsf{BR}(B_u \to \tau \nu_{\tau})$, ΔM_{B_s}

- models under consideration: CMSSM, NUHM
- Current χ^2 fit: low values, $\mathcal{O}(4)$ reached
- Evaluation of SUSY spectrum ⇒ ILC reach similar results in all scenarios: tan β = 10: sleptons, charginos, neutralinos (partially) in reach possibly some chance for light stops tan β = 50: some sleptons, charginos, neutralinos (partially) in reach hardly any chance for light stops or other colored particles

5. Conclusinos

- Precision observables
 - can give valuable information about the "true" Lagrangian
 - can provide bounds on SUSY parameter space
- Most important electroweak precision observables: M_W , $\sin^2 \theta_{\text{eff}}$, Γ_Z , M_h , $(g-2)_\mu$

Most important B physics observables:

 $\mathsf{BR}(b \to s\gamma)$, $\mathsf{BR}(B_s \to \mu^+ \mu^-)$, $\mathsf{BR}(B_u \to \tau \nu_{\tau})$, ΔM_{B_s}

- models under consideration: CMSSM, NUHM
- Current χ^2 fit: low values, $\mathcal{O}(4)$ reached
- Evaluation of SUSY spectrum \Rightarrow ILC reach similar results in all scenarios: $\tan \beta = 10^{\circ}$ sleptons chargings neutralings (part)
 - $tan \beta = 10$: sleptons, charginos, neutralinos (partially) in reach possibly some chance for light stops
 - $\tan \beta = 50$: some sleptons, charginos, neutralinos (partially) in reach hardly any chance for light stops or other colored particles

The prospects for the ILC(500/100) to see SUSY are very good