Monolithic Pixels R&D at LBNL

International Linear Collider Workshop, LCWS 2007

DESY Hamburg, May 30 – June 3, 2007

Devis Contarato

Lawrence Berkeley National Laboratory

M. Battaglia, L. Glesener, B. Hooberman (UC Berkeley & LBNL), P. Giubilato (LBNL & INFN Padova), J.-M. Bussat, P. Denes, C. Q. Vu (LBNL)

Outline

Introduction: monolithic pixels R&D at LBNL

CMOS Monolithic Pixels

- ۶ Summary of results with first 3T prototype
- Prototype with in-pixel CDS ۶
- Next submission: prototype with integrated ADC ۶

SOI Pixels

- First prototype
- **Device simulation** ≻
- First signals

Outlook

Devis Contarato

Pixel Pive 20um Guard Ring Bias Ring (float) (0V) VSS Ring (float) (0V) Si(~40nm) N) HV Rin Buried Oxide(200nm) w=5 n+ w=5 w=5 20um Oum 330um ~600um p+/n+ Implant and Contact formation High Resistive substrate (n) AI(200nm

Introduction

- LBNL R&D activities on pixel sensors:
 - Pixel prototype design and characterization
 - Sensor simulation in ILC software framework (see M. Battaglia's talk in Sim/Reco session)
 - Readout development ۶
 - Back-thinning tests
 - Pixel module engineering

 \rightarrow see M. Battaglia's talk in this session

- Synergy with other on-going LBNL activities on CMOS pixels: STAR HFT upgrade, electron microscopy, existing infrastructure from ATLAS pixels
- Availability of test facilities on site:
 - Advanced Light Source: beam-tests with 1.5 GeV e⁻
 - > 88-inch Cyclotron: irradiations with 30-50 MeV p, <30 MeV n</p>
 - LOASIS plasma accelerator facility, 50 MeV-1 GeV e⁻

Devis Contarato

DESY, May 30–June 3, 2007

LCWS 2007

LDRD-1: first CMOS prototype

LDRD-2: in-pixel CDS

- LDRD-2: second prototype chip in AMS 0.35 μ m OPTO process,
- $14 \ \mu m \ epilayer$
- \bullet 20×20 μm^2 pitch with in-pixel CDS: signal and pedestal level stored on pixel capacitors
- 3×3 μm^2 and 5×5 μm^2 diodes
- Read out in rolling-shutter mode
- Circuitry for charge injection tests: study capacitive coupling between pixels
- Tests underway; study of performance w.r.t. to clock frequency, up to 25 MHz

DESY, May 30–June 3, 2007

LCWS 2007

LDRD-2: beam-test results

- Test performed with 1.2 GeV e⁻ at the Advanced Light Source BTS line
- Preliminary results @ 27°C:

	3 μm diode	5 μm diode
<s n=""></s>	20.4	20.7
<npixels></npixels>	5.1	4.2

- Higher S/N but larger pixel multiplicity w.r.t. LDRD-1 prototype
- Tracking test at FNAL (100 GeV p) in June/July

Cluster pulse height for 1.2 GeV e-

Devis Contarato Monolithic Pixels R&D at LBNL

DESY, May 30–June 3, 2007

LCWS 2007

Charge collection time measurement

First measurement of charge collection time in AMS 0.35 μm
OPTO process

 Short (~ns) 1060 nm laser pulse collimated on 20x20 μm² pixel (charge = 1 m.i.p.); pulse delayed w.r.t. trigger in order to match pixel readout

• Charge collection time

 Δt ~150 ns

 Measurement reproduced both on LDRD-1 and LDRD-2

Devis Contarato

Monolithic Pixels R&D at LBNL

LCWS 2007 DESY, May 30–June 3, 2007

LDRD-3: integrated ADCs

Devis Contarato

Monolithic Pixels R&D at LBNL

rrrr

BERKELEY LAB

Sample readout scheme @ 50 MHz

- LDRD-3: next prototype in AMS 0.35 μm OPTO, to be submitted in June/July
- In-pixel CDS
- At the end of each column:
 - 5-bit successive approximation,

fully-differential ADCs @ 300 MHz

SRAM memory cell

LDRD-SOI pixel prototype

• 0.15 μm OKI fully depleted SOI, 160x150 pixels, 10x10 μm^2 pixels

• 2 analog parts (1.0V and 1.8V, "high" and "low" voltage resp.), 1 digital part; $1x1 \ \mu m^2$ and $5x5 \ \mu m^2$ diodes

 Choice of substrate contact and pixel layout justified by TCAD simulations (see next)

• Submitted in Dec. '06 through KEK; pilot run, not optimized in terms of leakage current; optimized run to follow in Fall '07

Pixel

Pixel

• Chip received May '07: tests underway

First signals from LDRD-SOI

rrrr

BERKELEY LAB

DESY, May 30–June 3, 2007

TCAD simulations

- Simulation performed with Synopsys TCAD (Taurus Device)
- \bullet 2D model of 5 pixel cluster (10 μm pixel pitch) and substrate contact regions
- 350 μ m thick substrate, n-type silicon (6×10¹² cm⁻³); 200 nm buried oxide
- Different diode sizes (1 $\times 1~\mu m^2$ and 5 $\times 5~\mu m^2$)

Surface potential, choice of pixel guard-ring

- Pixel surface potential for different diode sizes and depletion voltages
- Potential in-between pixels too high, especially for smaller diode size
- Add floating p-guard structure (1 μ m wide) to keep potential low and limit back-gate effects on MOS transistors on top of buried oxide

Charge collection simulation

 \bullet Simulate passage of m.i.p. (80 e-h/ μm) and charge collection in 5 pixel cluster

• Study collected signal as a function of depletion voltage and of track position within hit pixel

- Total cluster signal ~constant as a function of position within hit pixel
- Most of the charge is collected in hit pixel, expect larger cluster size for smaller diode pitch

DESY, May 30-June 3, 2007

Conclusions & Outlook

• Two prototypes of LDRD family produced and tested, exploring various pixel designs and architectures; submission of next prototype with CP readout and 5-bit ADC in Summer

• First prototype in OKI 0.15 μm SOI technology just received, tests underway; next prototype submission in Fall '07 with optimized process. Spin-off of SOI technology for beam instrumentation and diagnostics for LOASIS; plans for tests with low momentum electrons and tunable beam energy

 Tracking tests at forthcoming beam-test at FNAL with 100 GeV p in June/July, employing new 4-plane beam telescope with 50 µm thin CMOS pixel sensors (see M. Battaglia's talk)

 Collaborative efforts with other institutions: DEPFET irradiation with MPI Munich, development of new readout system with INFN Padova, FNAL test-beam with Purdue University and INFN Padova

Devis Contarato Monolithic Pixels R&D at LBNL

