Linear Collider Workshop 2007 DESY - Hamburg

Parametrisation of the Monolithic Active Pixel Sensors response – a Geant4 study

Łukasz Mączewski Warsaw University

MAPS - Monolithic Active Pixel Sensor

- Generated charge in a sensitive epitaxial layer transported by thermal diffusion to the n-well/p-well diode
- Readout electronics on the top of the sensitive volume → fill factor 100%.
- MIMOSA5 first real-scale MAPS prototype (3.5 cm²)
 - Pixel size: 17μm × 17μm
 - Epitaxial layer: 14µm
 - Thickness: 120µm
 - Beam tests with 6 GeV electrons at θ = 0°

Energy deposition by 6 GeV electrons

Beam test data – cluster

Geant4 – distribution of energy deposition

- Data a cluster (charge distributed into several pixels)
- MC distribution of energy deposition
- To simulate a cluster, parametrisation of the detector response needed

Not to forget about electronic effects: noise, ADC conversion

A simple model of charge diffusion

 Isotropic thermal diffusion leads to charge spread into adjacent pixels – cluster formation

Isotropic diffusion

Deposited energy is converted to charge (Q) and redistributed

into pixels according to the formula:

$$\mathbf{q}(\mathbf{R}) = \mathbf{Q} \left(\frac{\mathbf{d} \Omega}{(4 \pi)} \exp \left(\frac{-\mathbf{R}}{\lambda} \right) \right)$$

λ to be determined

Attenuation term

Determining λ

 Output of the Geant4 simulation contains only information on physical signals left by electrons

Determining λ

- Also include:
 - Noise
 - Conversion to ADC

Signal pixel = int (
$$\alpha$$
·Charge MC (λ) + Noise)

• α and λ to be determined by fitting

Determined from

Fitting λ

5x5 pixel cluster

• The best fit for $\lambda = 38 \mu m$

Fitting λ

5x5 pixel cluster

• The best fit for $\lambda = 38 \mu m$

Comparison of Geant4 clusters with data clusters

- Collected charge as a function of the cluster size (normalised to one pixel cluster – seed pixel) – good agreement with data for λ = 38μm
- Position of the particle (Cog algorithm) in respect to the centre of a seed pixel ($\lambda = 38 \mu m$)

Comparison of Geant4 clusters with data clusters

 Charge collected in symmetrical clusters formed around a seed pixel (3x3 and 5x5 pixel clusters)

Cluster shape

- MC predicts that cluster shape depends on θ asymmetry
- Is it possible to distinguish clusters originating from particles passing detector at different angles θ ??

Background rejection based on cluster shape?

- In order to distinguish clusters from particles incident at different angles one can exploit cluster asymmetry
 - Define R_Y²:

$$R_{Y}^{2} = \sum_{i} (Y_{\text{seed}} - Y_{i})^{2} \frac{\text{Charge}_{i}}{\text{Charge}_{\text{cluster}}}$$

• Distributions of R_Y^2 are distinctly different for $\theta = 0^\circ$ and $\theta = 75^\circ$

This preliminary result gives promising perspectives in view of beamstrahlung rejection (see talk of Paweł Łużniak)

Summary and prospects

- Proposed parametrisation of MAPS response describes test data for particles passing detector at $\theta = 0^{\circ}$
 - Needed measurements with rotated array in order to check how our parametrisation works for $\theta \neq 0^{\circ}$
- The model presented here can be used to implement detailed detector response description in a Geant4 simulation
- Check possibility to reject beamstrahlung background exploiting cluster shape.