

LumiCal & BeamCal

Readout Electronics

M. Idzik, K. Świentek,

W. Dąbrowski, Sz. Kulis

AGH Kraków

G. Haller, D. Freytag,

M. Breidenbach, A. Abusleme

Stanford Linear Accelerator

Center

Outline

- Introduction
- Front-end electronics challenges
- LumiCal: readout architecture, front-end design & simulations, ADC design & simulations, layout
- BeamCal: readout architecture, front-end design, fast feedback, ADC and memory issues, radiation hardness, power consumption
- Summary & milestones

Detector specs

- □ Wide signal range: from ~2 fC in calibration mode up to ~15 pC for LumiCal and ~40 pC for BeamCal in physics mode, 10 bit resolution
- High speed operation: short inter bunch time of ~300 ns and high particle occupancy
- □ Wide range of sensor capacitance: 10-100 pF for LumiCal, rather constant ~20 pF plus fanout for BeamCal
- Low average power dissipation
- Radiation hardness: an issue for BeamCal, less for LumiCal
- ☐ Fast feedback: needed for BeamCal for beam diagnosis

Challenges of front-end

Large C_{det} range 10-100 pF

Calibration mode S/N~10 for MIP

Charge sensitive amplifier

 $Q_{max} \sim 15 \ pC \ (40 \ pC)$

 $Cf \sim 10 pF (40 pF)$

Calibration & Physics mode
Variable gain

 $\Delta t \approx 300 \text{ ns}$, high occupancy

LumiCal: PZC +Shaper T_{peak}~ 60ns

BeamCal: under study

LumiCal readout architecture

- Front-end ASIC with32-64 channels
- An ADC serving 1-8front-end channels
- Direct readout
- First prototypes inAMS 0.35 μm

LumiCal front-end electronics architecture

- □ Preamplifier: Cf~10pF (physics),
 Cf~0.5pF (calibration),
 I_{pre}~2.5mA,
- Shaper: 1st order,T_{peak}~60ns, variable gain, I_{sh}~0.5mA

Both Preamplifier and Shaper designed as folded cascode plus source follower

Front-end simulations

- Front-end response in calibration (mode0) and physics (mode1) mode for different C_{det}
- In physics mode the output vs Q_{in} is linear up to ~7 pC and saturates for ~12 pC

Alternative front-end Switched-Reset configuration

- Single stage
- Wide output range

Output amplitude vs Q_{in}

for different Cf

LumiCal ADC architecture

- 10 bit pipeline ADC
- 1.5 bit stage
- Fully differential architecture

Pipeline advantages

- High throughput
- Robustness
- Power efficient
- ► Reasonable area

1.5 bit stage architecture

Layout of LumiCal ASICs

We have just submitted the prototype ASICs containing front-end and ADC functional blocks

8 channels with continuous shaping and 4 channels with switched-reset

8 pipeline 1.5 bit stages

BeamCal readout architecture

- ◆ Dual-gain front-end electronics: charge amplifier, pulse shaper and T/H circuit, 32 channels per ASIC
- Successive approximation ADC, one per channel
- Digital memory, 2820 (10 bits + parity) words per channel
- Analog addition of 32 outputs for fast feedback; low-latency ADC
- Prototype in 0.18-μm TSMC CMOS technology

ADC and memory issues

- ADC power consumption depends lightly on the number of ADCs
 - one channel per ADC is simple in terms of operation
 - many channels per ADC are efficient in terms of area
 - successive approximation ADCs present a balanced tradeoff, could eventually assign a single channel per ADC without a significant increase in area; currently under study
- Memory choice: analog or digital?
 - Analog memory problems:
 - high droop rate due to switch leakage, especially after irradiation
 - radiation-tolerance techniques are not simple nor flexible
 - Digital memory problems:
 - more area
 - Digital memory will be used mainly due to flexibility

Radiation hardness requirements

- Chip must be able to tolerate 1Mrad(SiO₂) total ionizing dose (TID)
- TSMC018 is naturally tolerant to TID, but some sensitive circuits in the chip require additional protection
- This can be done by using mitigation techniques:
 - Enclosed-layout transistors
 - Guard rings
- Consequences in circuit design:
 - Power consumption increases by $2\times$ or more, depending on the circuit
 - Chip area increases by 2.5× in some circuits
- First prototype will not be radiation-tolerant, but will allow to:
 - assess the technology tolerance to radiation
 - detect the most radiation sensitive circuits

Power consumption estimation per IC

- Front-end circuits: 1.8mW
- ◆ ADC: 0.9mW
- Memory: 0.03mW
- LVDS drivers: 1.8mW

 Average power consumption per IC: 4.5 mW

Milestones

- Now first prototypes submitted
- ~March 2008 tests finished, submission of ADC prototypes and front-end prototypes including S/H
- ~December 2008 tests finished, submission of complete front-end and ADC prototypes
- June 2009 tests of prototypes completed
- August 2007-July 2008: Front-end designed, ADC designed, Memory designed, Fast feedback designed, Bias and supporting circuits, Circuit layout complete, Verification complete
- Sept.-December 2008:
 Prototype ready, Prototype tests complete