
1

A
MERLIN-Based

 Start-to-End Simulations
 for the ILC

 Dirk Kruecker,
 Freddy Poirier, Nicholas John Walker

Outline of this talk:
● Goals, troubles and Software Design
● First Results

2

A ”start-to-end” simulation at least RTML-BDS

● For a start ML-BDS
● Ground motion modelling ⇨BOTH accelerator sides

● ATL, Seryi ABC to investigate correlated GM
● Support structures for cryomodules, final focus system etc.
● Modelling of steering, tuning, feedbacks
● Total X-section e+e-

● Guineapig (Daniel Schulte)
● ROOT output
●

Goal

3

MERLIN is a C++ library developed by N. Walker and A. Wolski
 and several other people
about 42000 lines of code
Main classes*

● AcceleratorModel ← constructed by XTFFInterface from
XTFF lattice file ~ MAD8 twiss output

● SupportStructure ← a handle to move acc. components
 for ground motion etc. and a way to
 group elements (i.e. cryomodules)
● BeamLine ← seq. of accelerator components
● Channels ← e.g. BPMs and correctors
● Tracker ← tracks a bunch through a beam line
● Bunch ← ParticleBunch / SMPBunch

MERLIN Basics

* do not take any class description in this talk literally
 everything is simplified for the sake of clarity

4

MERLIN is a C++ library developed by N. Walker and A. Wolski
 and several other people
about 42000 lines of code
Main objects (simplified * class structure)

● AcceleratorModel ← constructed by XTFFInterface from
XTFF lattice file ~ MAD8 twiss output

● SupportStructure ← a handle to move acc. components
 for ground motion etc. and a way to
 group elements (i.e. cryomodules)
● BeamLine ← seq. of accelerator components
● Channels ← e.g. BPMs and correctors
● Tracker ← tracks a bunch through a beam line
● Bunch ← ParticleBunch SMPBunch

MERLIN Basics

* do not take any class description in this talk literally
 everything is simplified for the sake of clarity

detailed tracking of 6d particles
slow

only centroids and 2nd order moments
for x,x',y,y'

fast

5

SupportStructure

● SimpleMount
 a point in space
 that can be move

● GirderMount
 2 points enclosing several accelerator elements

● implemented in MERLIN for ground motion on top of the geometry

not a MAD type but represented conventionally by MARKers in the
XTFF file e.g crymodules

c
c

A second layer on top of the geometry of an
accelerator element.

6

A First Try

 2 AcceleratorModel (electron + positron) same lattice file for both sides
● constructed with from the lattice file we used last year
(e.g. Failure mode studies and ILCDFS) : ilc_linac_15_250.xtff (?)
● Separate file for the BDS layout

● 2 tracker for each model = 4 in total
● SMPTracking in ML / ParticleTracking in BDS *

● a converter SMPBunch ⇔ ParticleBunch
● An interface and a wrapper to use code from Daniel Schulte for

groundmotion according to models ABC
● Separate One2One steering in ML and BDS
● A simple FFB: fix centroids x,x',y,y' of a bunch at begin of the BDS
● All split magnets on BDS (e.g. Q1-BPM-Cor-Q2) and cryomodules on

girders

*for the full simulation the gain in time is about a factor of 5

7

How to collide?

● after construction we have 2 independent models
 both starting at z=0

● the IP in both accelerator models must be the same point in
 space
● the concept of supports is used move and reflect the
 accelerators (the relative position is only relevant for GM)

● Works!

e+
Main Linac BDSe
Main Linac BDS IP

e-
Main Linac BDSMain Linac BDS IP

z

e+
Main Linac BDSe
Main Linac BDS IP

+z-z
z=0

8

Some minor changes ...

So far we had a reasonable concept but we should use the latest ILC lattice
files from Mark Woodley's web page http://www.slac.stanford.edu/~mdw/ILC/ :

● ILC2006c:
 Slightly different naming convention in new files

Changes in naming convention produce two kind of problems;
● parser (XTFFInterface) does not work (position of girders not recognized)
● simulation code cannot access elements by name (e.g. BPMs)

● ILC2006e:
 Slightly different naming convention in new files

● Undulator appears
only partly implemeted: bypass and drifts for undulator cell
second half of ML: additional string to compensate for the energy loss
-> electron side is clearly different now from positron side

 but no lattice for positron ML

9

Lattice files
● Lattice file contains in addition to the standard MAD types
 MARKers for girder, supports.

Original lattice file convention (as implemented in the present Merlin lib)
(ilc_linac_15_250.xtff – 20389 elements ML + separate BDS file)
MARKG_CM – MARKG_CM (girder for cryo modules)
...

 MARKVPIV (kicker to follow earth curvature)
VKICYCOR / MONIBPM

ILC2006c (42634 elements ML-BDS)
girders

MARKBEGMLCM - MARKENDMLCM
Markers(?) for correctors and BPMs in ML

MLXCOR MLYCOR MLBPM
ILC2006e (46778 lelements ML-BDS)

MARKBEGMLCM – MARKENDMLCM + MARKBEGMLQ - MARKENDMLQ
ML BPMs and correctors back as corresponding MAD types
electron undulator appears but no bpms and correctors
added my own: MARKUNBPM MARKUNXCOR MARKUNYCOR

 MARKBEGUNCM MARKENDUNCM
magnet mover in BDS only a few correctors

and other differences ...

10

● syntax parsing in the original XTFFInterface turned out to be
 inflexible
● Handling of BPMs/correctors and supports depends on
 naming
● Extra BPMs/correctors needs modification to MAD files
● a new element undulator (additional energy smearing for
 SMPTracking)
● no MULTIpole element in Merlin
● Particle tracking in undulator : 4 -> 7 separate trackers
● ...

Difficulties

Handling of code became difficult!

11

● The code has to be flexible
● Keep identifiers (names) in one place (if possible)

 the lattice files defines a vocabulary that is used in different places of the
 simulation code. Changes in an evolving ILC cannot be avoided
● Use a generic approach to build Bunches and Tracker

more general: generic SubSystems
● debugging, x-checks:

● Ability to change easily between Particle and SMP
● Slice the xtff input file to run only a part of the model
● Ability to define additional girders/BPMs/Correctors

 (without changing the input (mad) files)

Wish list

New parser
Generic code to model subsystems:

 Accelerator & SubSystem

12

New XTFFInterface

XTFF

XTFFComponentBuilder

XTFFParser
xtff file

syntaxsemantic +
vocabulary

pragmatic:
build Merlin

Classes

Many methods to modify (parsing)
behavior

translation table

13

● model from only part of XTFF files
● Stepwise construction of AcceleratorModel
● Additional girders (e.g. final focus) by name or z-position
● Elements can be forced to be on supports

● WARNINGS if active element is not on a support
● High Order Magnets on/off
● ...

New Functionality

14

Accelerator

 Accelerator

void Track()
void Steer()
AcceleratorSupportList* CreateSupportslist()
...

vector< SubSystem* > eSubs
vector< SubSystem* > pSubs
vector< SteerAlgo* > eSteer
vector< SteerAlgo* > pSteer
...

simplified

loop:
eSubs & pSubs

loop:
steering algorithms

export
list of support

ELIN1 ELIN2

EUND EBDS

One2oneOne2OneBDS One2OneELIN1 One2OneELIN2 One2OneEUND One2OneML

SteerAlgo

15

SubSystem

SubSystem

virtual void BunchHandler (Bunch*& b)
virtual void Track (Bunch *b=currentBunch)
virtual void Init (pair< AcceleratorModel *, BeamData * > mb)
...

string begMark
string endMark

AcceleratorModel* accMod
AcceleratorModel::Beamline bline
BeamData* bdat
...

Interface allows a list of SubSystems in Accelerator

loop on subsystems: BunchHandler(theBunch) <- create/pass/convert the bunch
 Track(theBunch)

16

TypedSubSystem

TypedSubSystem

virtual void BunchHandler (Bunch*& b)
virtual void Track (Bunch *b=currentBunch)
virtual void Init (pair< AcceleratorModel *, BeamData * > mb)

virtual T * CreateBunch (BeamData *bd=0)
virtual void CreateTracker (AcceleratorModel::Beamline *bl=0)

protected:
void CreateBunch (ParticleBunch *&pb, BeamData *bd)
void CreateBunch (SMPBunch *&sb, BeamData *bd)
...
TTrackSim< TBunchCMPTracker<T > >* theTracker
T* currentBunch
SMPBunchConstructor * SBC
ParticleBunchConstructor * PBC
...

< T >

SubSystem

SMPBunch / ParticleBunch

implements
the interface

knows about
type specific
BunchCreator/
Tracker etc.
and selects the
automatically the
right one
(overloading / RTTI)

17

concrete SubSystems

for testing useful
● each subsystem can easily be used with
 SMPTracking and ParticleTracking
● only small modifications to run a subsystem
 in stand alone mode (e.g. EBDSonly)

SubSystem

TypedSubSystem< ParticleBunch> TypedSubSystem< SMPBunch>

EBDS

EBDSonly

EUND

EUNDonly

ELIN1

ELIN2

FFB

Match

18

Building the Model
main

AcceleratorModell

ELIN1

EUND

...
EBDS

InitInitInit

get model

modify behavior
parse xtff

all identifiers/names are hard-coded
on this side

19

c l a s s E B DS : p u b l i c T y p e d S u b S y s t e m< P a r t i c l e B u n c h >
{
p u b l i c :
 E B DS (X T F F &);
} ;
/ / - E B DS -
E B DS : : E B DS (X T F F & e X T F F){

 n a me = " E B DS " ;

 / / s p e c i a l ma r k e r s
 b e g Ma r k = " MA RK B E G_ E B S Y 1 " ;
 e n d Ma r k = " MA RK E ND_ E F F 1 " ;

 / / mo d i f y X T F F b e h a v i o r
 e X T F F . T r e a t T y p e A s D r i f t (" I N S T "); / / s w i t c h o f w a r n i n g s
 e X T F F . C o n s t r u c t G i r d e r s F o r S p l i t Ma g s (b e g Ma r k , e n d Ma r k);
 e X T F F . A l l S p l i t Qu a d s B X Y (t r u e); / / a d d i t i o n a l B P M/ X Co r / Y C o r o n

 / / F I NA L F OCUS
 / / OC 1 - S F 1 - QF 1 - S D0 - OC0 - QD0
 e X T F F . A d d Gi r d e r P a i r (1 4 7 4 5 . 5 1 0 , 1 4 7 5 2 . 2 6 0);

 / / a p p e n d l a t t i c e f i l e f r o m- t o (i n c l u s i v e l y)
 p a i r <B e a mDa t a *, B e a mDa t a *> b b =
 e X T F F . A p p e n d Mo d e l A B (Mo d P a r : : e F i l e N a me , b e g Ma r k , e n d Ma r k);
 b d a t = b b . f i r s t ;
} ;

If you have got the impression that my code has become a little complicated :)
– the opposite is true e.g BDS:

not
simplified

20

Preliminary Model

ELIN1
(SMP)

EUND
(Particle)

ELIN2
(SMP) EBDSFB FB

One-to-one steering xy (433 BPMs) One-to-one steering xy
(86 BPMs)

faked
“fast feedback”

centroids fixed to
nominal

faked feedback system
to collide

bunch centroids
&

5 tuning knobs for
waists – dispersion – coupling

(matrix – not the real thing, yet)

No realistic modeling of feedback and tuning yet.

21

First Results – ML

Bypass for undulator
seems to be a stability
issue

Bypass &
“undulator”

One-to-one steering
Additional 86
BPMs+YCorrectors
in bypass

Main linac (100 seeds, 10k particles)
ATL ground motion
this plot only y errors
A= 4 ·10-18

No further alignment
errors

1 year

22

First Results – ML+BDS stability
1d 1m 1y

● ATL in x and y
● 1-2-1 steering
● 40 collision each
 point
● 5 Tuning knobs:
 wx,wy,dx,dy,cxy
● GUNIEAPIG for
● x-section calc.

Noise:
add. Transverse errors, ML 300 nm, BDS 100 nm
approx RDR nominal values: x =10 y = 0.04 mu

L about 12% smaller
 larger x y in ILC2006e

lattice at IP as in RDR

Preliminary!

23

Summary
In the attempt to model the ILC one encounters several difficulties

● Evolving system
● Partial lattice files
● Naming
● ...
We tried to develop a flexible framework

● General solution for technical details (SMP/Particle tracking)
● Modular and and easy to extend
● Reduced dependency on names (vocabulary)
● Interfaces to plug in
 steering algorithms – tuning – feedback systems – ground motion models
 ...
To Do

● Simulation runs for correlated ground motion models – positron side?
● Realistic errors
● Merlin DFS package
● BDS Tuning studies
● Multi bunch modeling
● RTML ...

Naming conventions ?
Common repository / version management?

