Running and Decoupling in the MSSM

Luminita Mihaila

Institut für Theoretische Teilchenphysik Universität Karlsruhe

in collaboration with R. Harlander^(a), M. Steinhauser^(b)

(a) Fachbereich C, Theoretische Physik, Universität Wuppertal

(b) Institut für Theoretische Teilchenphysik, Universität Karlsruhe

Outline

- Motivation
- S Evaluation of $\alpha_s(M_{GUT})$ (3-loop accuracy)
- Evaluation of $m_{\rm b}^{\rm \overline{DR}}(M_{\rm SUSY})$ (4-loop accuracy)
- Conclusions

Solution MSSM: gauge couplings tend to unify at $M_{\rm GUT} \simeq 10^{16} {\rm GeV}$

Allanach et al '04

- ▶ MSSM: gauge couplings tend to unify at $M_{\rm GUT} \simeq 10^{16} {\rm GeV}$
- One can set constrains on the SUSY-breaking mechanism relating observables at the low-energy and GUT-scales

- Solution MSSM: gauge couplings tend to unify at $M_{\rm GUT} \simeq 10^{16} {\rm GeV}$
- One can set constrains on the SUSY-breaking mechanism relating observables at the low-energy and GUT-scales

2-loop MSSM RGEs Sp. Martin and M. T. Vaughn '93
 1-loop threshold corrections D. Pierce et al '96 ⇒
 Public Codes: ISAJET H. Baer et al '03, SuSpect A. Djouadi et al '03
 SPHENO W. Porod '01, SOFTSUSY W. Allanach '01

Solution Soluti Solution Solution Solution Solution Solution Solution S

- Solution MSSM: gauge couplings tend to unify at $M_{\rm GUT} \simeq 10^{16} {\rm GeV}$
- One can set constrains on the SUSY-breaking mechanism relating observables at the low-energy and GUT-scales
 - 2-loop MSSM RGEs Sp. Martin and M. T. Vaughn '93
 1-loop threshold corrections D. Pierce et al '96 ⇒
 Public Codes: ISAJET H. Baer et al '03, SuSpect A. Djouadi et al '03
 SPHENO W. Porod '01, SOFTSUSY W. Allanach '01
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
 - Our aim: 3-loop RGEs for SUSY-QCD sector 2-loop threshold corrections *R. Harlander, L. M., M. Steinhauser '05* $\Rightarrow \alpha_s^{\overline{\text{DR}}}(M_{\text{GUT}})$ with 3-loop accuracy

Running of α_s

Running of α_s

- Mass-independent Renormalization scheme Decoupling Theorem does not hold ⇒ threshold effects should be added by hand
 - SUSY models with severely split mass spectrum Multi-Scale Approach: each particle decoupled at its own threshold
 - SUSY models with roughly degenerate mass spectrum Common Scale Approach: all SUSY particles decoupled at $\mu \simeq M_{\rm SUSY}$
 - ! implemented in almost all currently available codes

DRED Framework

Quasi-4-dim. space (Q4S):

Quasi-4-dim metric tensor:

$$4 = d \oplus 4 - d$$

$$G_{\mu\nu} = g_{\mu\nu} + \tilde{g}_{\mu\nu}$$

- Dirac matrices in Q4S: Γ_{μ} =
- $\Gamma_{\mu} = \gamma_{\mu} + \tilde{\gamma}_{\mu}$
- space-time coordinates continued from 4 to $d \le 4$ dim.
- the number of field components unchanged

$$V^{a}_{\mu} = g_{\mu\nu} A^{a}_{\nu} = d \text{- dim. vector}$$

$$S^{a}_{\mu} = \tilde{g}_{\mu\nu} A^{a}_{\nu} = \varepsilon \text{ scalar}$$

under gauge transformations

Renormalization

$$\mathcal{L}_{\mathrm{B}} = \mathcal{L}_{\mathrm{B}}^{d} + \mathcal{L}_{\mathrm{B}}^{arepsilon}$$

- \checkmark $\mathcal{L}^d_{\mathrm{B}}$ same as in DREG
- $\mathcal{L}_{B}^{\varepsilon}$ new contribution due to ε -scalars

$$\mathcal{L}_{\mathrm{B}}^{d} = -\frac{1}{4} G^{a,ij} G^{a}_{ij} - \frac{(\partial^{i} V^{a}_{i})^{2}}{2(1-\xi)} + \mathcal{L}_{\mathrm{ghost,B}}^{d} + i \bar{\psi}^{\alpha} \gamma^{i} D^{\alpha\beta}_{i} \psi^{\beta}$$
$$\mathcal{L}_{\mathrm{B}}^{\varepsilon} = \frac{1}{2} (D^{ab}_{i} S^{b}_{\sigma})^{2} - g \bar{\psi} \tilde{\gamma}_{\sigma} T^{a} \psi S^{a}_{\sigma} - \frac{1}{4} g^{2} f^{abc} f^{ade} S^{b}_{\sigma} S^{c}_{\sigma'} S^{d}_{\sigma} S^{e}_{\sigma'}$$

- seach term in $\mathcal{L}_{\mathrm{B}}^{\varepsilon}$ invariant under gauge transformations
 - no reason that Yukawa-type $\overline{\psi}\psi S$ and $\overline{\psi}\psi V$ vertices renormalize the same way [except for SUSY theories !]
 - f = f structure not preserved under renormalization

Renormalization(2)

$$\mathcal{L}^{\varepsilon} = \frac{1}{2} Z_{3}^{\varepsilon} (\partial_{i} S_{\sigma})^{2} + Z^{\varepsilon \varepsilon V} g f^{abc} \partial_{i} S_{\sigma}^{a} V^{b,i} S_{\sigma}^{c} + Z^{\varepsilon \varepsilon V V} g^{2} f^{abc} f^{ade} V_{i}^{b} S_{\sigma}^{c} V^{d,i} S_{\sigma}^{e} - Z_{1}^{\varepsilon} g_{e} \bar{\psi} T^{a} \tilde{\gamma}^{\sigma} \psi S_{\sigma}^{a} - \frac{1}{4} \sum_{r=1}^{p} Z_{1,r}^{4\varepsilon} \eta_{r} H_{r}^{abcd} S_{\sigma}^{a} S_{\sigma'}^{c} S_{\sigma}^{b} S_{\sigma'}^{d}$$

- Solution Evanescent Yukawa-type g_e and p quartic couplings η_r
- \blacksquare a possible choice of H^{abcd} for SU(3) case

$$H_1 = \frac{1}{2} \left(f^{ace} f^{bde} + f^{ade} f^{bce} \right)$$
$$H_2 = \frac{1}{2} \delta^{ab} \delta^{cd} \qquad H_3 = \frac{1}{2} \left(\delta^{ac} \delta^{bd} + \delta^{ad} \delta^{bc} \right)$$

QCD β - and γ_m -functions within **DRED**

J Dimensional Reduction \oplus Minimal Subtraction $\overline{\mathrm{DR}}$

$$\begin{split} \beta_{s}^{\overline{\mathrm{DR}}} &= \mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \frac{\alpha_{s}^{\overline{\mathrm{DR}}}}{\pi} \quad \cdots \quad \gamma_{m}^{\overline{\mathrm{DR}}} = \frac{\mu^{2}}{m^{\overline{\mathrm{DR}}}} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} m^{\overline{\mathrm{DR}}} \\ \beta_{s}^{\overline{\mathrm{DR}}}(\alpha_{s}^{\overline{\mathrm{DR}}}, \alpha_{e}, \{\eta_{r}\}) &= -\sum_{i,j,k,l,m} \beta_{ijklm}^{\overline{\mathrm{DR}}} \left(\frac{\alpha_{s}^{\overline{\mathrm{DR}}}}{\pi}\right)^{i} \left(\frac{\alpha_{e}}{\pi}\right)^{j} \left(\frac{\eta_{1}}{\pi}\right)^{k} \left(\frac{\eta_{2}}{\pi}\right)^{l} \left(\frac{\eta_{3}}{\pi}\right)^{m} \\ \beta_{e}(\alpha_{s}^{\overline{\mathrm{DR}}}, \alpha_{e}, \{\eta_{r}\}) &= -\sum_{i,j,k,l,m} \beta_{ijklm}^{e} \left(\frac{\alpha_{s}^{\overline{\mathrm{DR}}}}{\pi}\right)^{i} \left(\frac{\alpha_{e}}{\pi}\right)^{j} \left(\frac{\eta_{1}}{\pi}\right)^{k} \left(\frac{\eta_{2}}{\pi}\right)^{l} \left(\frac{\eta_{3}}{\pi}\right)^{m} \\ \beta_{\eta_{r}}(\alpha_{s}^{\overline{\mathrm{DR}}}, \alpha_{e}, \{\eta_{r}\}) &= -\sum_{i,j,k,l,m} \beta_{ijklm}^{\eta_{r}} \left(\frac{\alpha_{s}^{\overline{\mathrm{DR}}}}{\pi}\right)^{i} \left(\frac{\alpha_{e}}{\pi}\right)^{j} \left(\frac{\eta_{1}}{\pi}\right)^{k} \left(\frac{\eta_{2}}{\pi}\right)^{l} \left(\frac{\eta_{3}}{\pi}\right)^{m} \\ \gamma_{m}^{\overline{\mathrm{DR}}}(\alpha_{s}^{\overline{\mathrm{DR}}}, \alpha_{e}, \{\eta_{r}\}) &= -\sum_{i,j,k,l,m} \gamma_{ijklm}^{\overline{\mathrm{DR}}} \left(\frac{\alpha_{s}^{\overline{\mathrm{DR}}}}{\pi}\right)^{i} \left(\frac{\alpha_{e}}{\pi}\right)^{j} \left(\frac{\eta_{1}}{\pi}\right)^{k} \left(\frac{\eta_{2}}{\pi}\right)^{l} \left(\frac{\eta_{3}}{\pi}\right)^{m} \end{split}$$

QCD: 3-loop $\beta_s^{\overline{\text{DR}}}$ -function

- up to 2-loop order $\beta_s^{\overline{\mathrm{DR}}} = \beta_s^{\overline{\mathrm{MS}}}$
- Sexplicit 3-loop computation R. Harlander, P. Kant, L. M., M. Steinhauser '06 comprises Yukawa like evanescent coupling α_e

$$\beta_{\mathbf{s}}^{\overline{\mathrm{DR}},\mathbf{3l}}(\alpha_{\mathbf{s}}^{\overline{\mathrm{DR}}},\alpha_{\mathbf{e}}) = \left[\frac{\alpha_{\mathbf{s}}^{\overline{\mathrm{DR}}}}{\pi}\right]^{3} \frac{\alpha_{e}}{\pi} \frac{3}{16} C_{F}^{2} T n_{f} + \left[\frac{\alpha_{\mathbf{s}}^{\overline{\mathrm{DR}}}}{\pi} \frac{\alpha_{e}}{\pi}\right]^{2} C_{F} T n_{f} \left[\frac{C_{A}}{16} - \frac{C_{F}}{8} - \frac{T n_{f}}{16}\right] - \left[\frac{\alpha_{\mathbf{s}}^{\overline{\mathrm{DR}}}}{\pi}\right]^{4} \left[\frac{3115}{3456} C_{A}^{3} - \frac{1439}{1728} C_{A}^{2} T n_{f} + \frac{1}{32} C_{F}^{2} T n_{f} - \frac{193}{576} C_{A} C_{F} T n_{f} + \frac{79}{864} C_{A} T^{2} n_{f}^{2} + \frac{11}{144} C_{F} T^{2} n_{f}^{2}\right]$$

■ 4-loop order $β_s^{\text{DR}}$ R. Harlander, T. Jones, P. Kant, L. M., M. Steinhauser '06 contains also quartic ε-scalar couplings $η_i$, (i = 1, 2, 3)

Conversion from $\overline{\mathrm{MS}}$ to $\overline{\mathrm{DR}}$

- Requirement: evanescent couplings should decouple from physical observables
- known through 3-loop R. Harlander, T. Jones, P. Kant, L. M., M. Steinhauser '06
- n-loop conversion relation needed for (n+1)-loop running analysis

$$\frac{\alpha_s^{\overline{\mathrm{DR}},(n_f)}}{\alpha_s^{\overline{\mathrm{MS}},(n_f)}} = 1 + \frac{\alpha_s^{\overline{\mathrm{MS}}}}{\pi} \frac{C_A}{12} + \left[\frac{\alpha_s^{\overline{\mathrm{MS}}}}{\pi}\right]^2 \frac{11}{72} C_A^2 - \frac{\alpha_s^{\overline{\mathrm{MS}}}}{\pi} \frac{\alpha_e}{\pi} \frac{1}{8} C_F T n_f$$

▶ $\alpha_e \neq \alpha_s^{\overline{\text{DR}}}$ proves equivalence of **DRED** and **DREG** at 3-loops

Decoupling of SUSY particles

SUSY-QCD & DRED: SUSY preserved \Rightarrow one coupling $\alpha_s^{\overline{\text{DR}},(\text{full})}(\mu)$

$$\begin{aligned} \alpha_e^{\text{(full)}}(\mu) &= \alpha_s^{\overline{\text{DR}},(\text{full})}(\mu) &= \eta_1^{\text{(full)}}(\mu) \\ \eta_2^{\text{(full)}}(\mu) &= \eta_3^{\text{(full)}}(\mu) &= 0 \\ \beta_s &= \beta_e &= \beta_{\eta_1} \text{ and } \beta_{\eta_2} = \beta_{\eta_3} = 0 \end{aligned}$$

QCD $(n_f = 5)$: low-energy effective theory of SUSY-QCD

 \Rightarrow integrate out all SUSY-particles and top-quark at $\mu = \mu_{
m dec}$

$$\alpha_s^{\overline{\mathrm{DR}},(n_f)}(\mu_{\mathrm{dec}}) = \boldsymbol{\zeta}_s^{(n_f)} \alpha_s^{\overline{\mathrm{DR}},(\mathrm{full})}(\mu_{\mathrm{dec}})$$
$$\alpha_e^{q,(5)}(\mu_{\mathrm{dec}}) = \boldsymbol{\zeta}_e^q \alpha_e^{(\mathrm{full})}(\mu_{\mathrm{dec}})$$

 $\zeta_s^{(n_f)}$ and ζ_e^q decoupling coefficients for α_s and α_e

Evaluation of $\alpha_s(\mu_{\text{GUT}})$ **from** $\alpha_s(M_Z)$

Evaluation of $\alpha_s(\mu_{\text{GUT}})$ **from** $\alpha_s(M_Z)$

- Iterative Method :
 - 1. Start with a trial value for $\alpha_s^{\overline{\text{DR}},(\text{full})}(\mu_{\text{dec}})$
 - 2. Get $\alpha_s^{\overline{\text{DR}},(5)}(\mu_{\text{dec}})$ and $\alpha_e^{(5)}(\mu_{\text{dec}})$ through decoupling relations
 - 3. Evaluate $\alpha_s^{\overline{\text{MS}},(5)}(\mu_{\text{dec}})$ and from that $\alpha_s^{\overline{\text{MS}},(5)}(M_z)$
 - 4. Vary $\alpha_s^{\overline{\text{DR}},(\text{full})}(\mu_{\text{dec}})$ until $\alpha_s^{\overline{\text{MS}},(5)}(M_z)$ fits the experimental value
- Practical phenomenological analyses: approximate formula

$$\begin{aligned} \alpha_{s}^{\overline{\text{DR}},(\text{full})} &= \alpha_{s}^{\overline{\text{MS}},(n_{f})} \left\{ 1 + \frac{\alpha_{s}^{\overline{\text{MS}},(n_{f})}}{\pi} \left(\frac{1}{4} - \zeta_{s1}^{(n_{f})} \right) \right. \\ &+ \left(\frac{\alpha_{s}^{\overline{\text{MS}},(n_{f})}}{\pi} \right)^{2} \left[\frac{11}{8} - \frac{n_{f}}{12} - \frac{1}{2} \zeta_{s1}^{(n_{f})} + 2 \left(\zeta_{s1}^{(n_{f})} \right)^{2} - \zeta_{s2}^{(n_{f})} \right] \right\} \end{aligned}$$

numerical deviation from the Two-Step Approach $\leq 0.1\%$

Numerical results

 $\alpha_s^{\overline{\text{MS}},(5)}(M_Z) = 0.1189 \pm 0.001 \ Bethke' 06, \quad M_Z = 91.1876 \text{ GeV}$ and $\tilde{M} = m_{\tilde{q}} = m_{\tilde{g}} = 1000 \text{ GeV} \text{ SPS1a' '05}$

Numerical results

Comparison with the Leading-Log Approximation SPA-Convention'05 shows a big numerical deviation.

Numerical results

Sensitivity of $\alpha_s(M_{GUT})$ to SUSY-mass scale:

Evaluation of $m_b(\mu)$ **in** $\overline{\text{DR}}$ **scheme**

- ▶ Yukawa sector of SUSY-GUT models $\Rightarrow m_{top}, m_{bottom}/m_{tau}$
- **SUSY models with large** $\tan \beta$
 - SUSY mass spectrum and Higgs mass sensitive to bottom Yukawa coupling
 - relation between $Y_b(\mu)$ and $m^{\overline{DR}}(\mu)$ affected by large SUSY radiative corrections
 - $m_b^{\overline{\text{DR}}}(M_{\text{SUSY}})$ input parameter \Rightarrow need to be known with the highest possible accuracy
- Solution Relate $m_b^{\overline{\text{DR}}}(M_{\text{SUSY}})$ directly with $m_b^{\overline{\text{MS}}}(m_b)$
- I $m_b^{\overline{\mathrm{MS}}}(m_b)$ known with 4-loop accuracy J. H. Kühn, M. Steinhauser, C. Sturm '07

Relation $m^{\overline{\mathrm{DR}}} \leftrightarrow m^{\overline{\mathrm{MS}}}$

S Extract $m_{\rm b}^{\overline{\rm DR}}(M_Z)$ from accurately determined $m_{\rm b}^{\overline{\rm MS}}(m_b)$

$$m_{b}^{\overline{\mathrm{DR}}}(\mu) = m_{b}^{\overline{\mathrm{MS}}}(\mu) \left[1 + \delta_{m}^{(1l)}(\alpha_{e}) + \delta_{m}^{(2l)}(\alpha_{s}^{\overline{\mathrm{MS}}}, \alpha_{e}) + \delta_{m}^{(3l)}(\alpha_{s}^{\overline{\mathrm{MS}}}, \alpha_{e}, \eta_{i}) \right] \Big|_{\mu=\mu_{S}},$$

$$\left\{\alpha_s^{\overline{\mathrm{DR}}}, \alpha_e, \eta_i\right\}\Big|_{\mu=\mu_S}$$
 have to be known.

- Log contributions absent (mass-independent schemes)
- **2**-step approach for computing $m_{\rm b}^{\overline{\rm DR}}(M_Z)$ *H. Baer et al '02*
 - Running of $m_b(\mu)$ and conversion between \overline{MS} ↔ \overline{DR}
- Check if using QCD& $\overline{\text{DR}}$ or QCD& $\overline{\text{MS}}$ ⇒ same result

Input parameters:

 $\alpha_s^{\overline{\text{MS}}}(M_Z) = 0.1189 \pm 0.001$ S. Bethke '06 (green band) $m_b^{\overline{\text{MS}}}(m_b) = 4.164 \pm 0.025$ GeV J. H. Kühn, M. Steinhauser, C. Sturm '07 (pink band)

Input parameters:

 $\alpha_s^{\overline{\text{MS}}}(M_Z) = 0.1189 \pm 0.001$ S. Bethke '06 (green band) $m_b^{\overline{\text{MS}}}(m_b) = 4.164 \pm 0.025$ GeV J. H. Kühn, M. Steinhauser, C. Sturm '07 (pink band)

Input parameters:

 $\alpha_s^{\overline{\text{MS}}}(M_Z) = 0.1189 \pm 0.001$ S. Bethke '06 (green band) $m_b^{\overline{\text{MS}}}(m_b) = 4.164 \pm 0.025$ GeV J. H. Kühn, M. Steinhauser, C. Sturm '07 (pink band)

Solution Running of $m_{\rm b}^{\overline{\rm DR}}(\mu)$ in QCD& $\overline{\rm DR}$ with 4-loop accuracy

Conclusions

- A consistent approach to compute $\alpha_{s}^{\overline{DR}}(M_{GUT})$ and $m_{b}^{\overline{DR}}(M_{SUSY})$ with 3- and 4-loop accuracy is proposed
- The 3-loop effects comparable with the experimental accuracy for α_s and m_b
- Correct treatment of the evanescent couplings essential:
 2- and 3-loop conversion from MS to DR schemes.
- 1-loop LL-approximation not adequate to precision analyses
- \square $\alpha_{\rm s}^{\rm \overline{DR}}(M_{\rm GUT})$ very sensitive to SUSY-mass scale