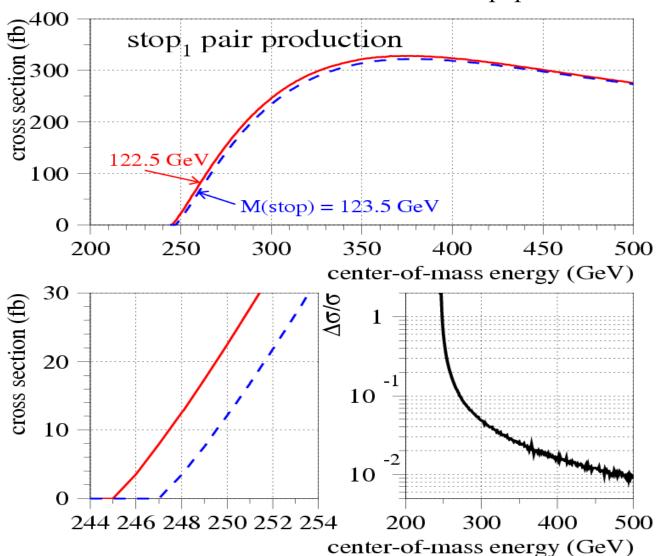
Precision Measurement of the Stop Mass at the Linear Collider

LCWS2007 & ILC2007-SUSY- June 2 - 2007 Desy- Hamburg

Caroline Milsténe

In Collaboration with
Ayres Freitas, Michael Schmitt, André Sopczak
Publication in Preparation

Introduction


• We have previously studied the light stop, with a small mass difference to the neutralino, in an attempt to understand EW baryogenesis the asymmetry matter anti-matter and its role in dark matter annihilation.

Phys. rev. D 72,115008(2005)

- M. Carena, A. Finch, A. Freitas, C. Milstene, H. Nowak, A. Sopczak
 The mass precision measurement reached was δm~1.2GeV.
 This analysis aims at the minimization of the systematics while using more realistic data, stop hadronization/fragmentation included.
- The precision is improved in two ways:
 - a/ <u>The systematic uncertainties</u> are minimized by measuring the production cross-section at two energies → cancellations .
 - b/ The 2nd energy point chosen at or close to the production energy threshold increased sensitivity to mass changes.
- The stop hadronization is included at production → the c quark energy is spread out in the process of hadronization.
 - the final number jets increases- the c-tagging is now a <u>necessity</u> to identify the charm jets (bench-marking for the vertex detector)
- Two approaches are used, a cut based analysis, a multi-parameters optimization analysis IDA
- The polarization improves further the signal to background ratio

Cross-Section Precision In Production

$$e^+e^- o \widetilde{t_1}\overline{\widetilde{t_1}}$$

Cross-sections [fb]
calculated using NLO
In MC software by
Freitas et al EPJ
C21(2001)361,
EPJ C34(2004)487

The Method

$$\sigma = \frac{N - B}{\varepsilon L}$$

$$Y(M_x \sqrt{s_{th}}) = \frac{N_{th} - B_{th}}{N_{pk} - B_{pk}} = \frac{\sigma(\sqrt{s_{th}})}{\sigma(\sqrt{s_{pk}})}$$

 σ the cross-section [fb]

N the number of selected data events

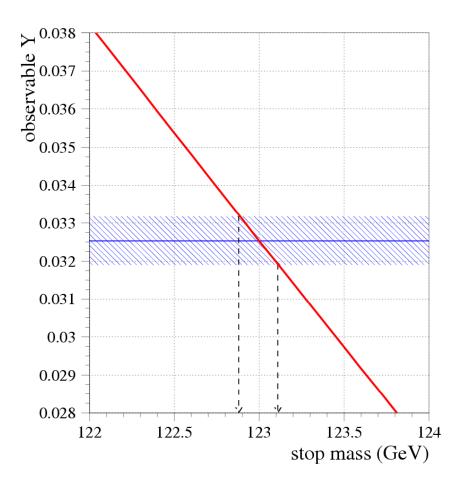
B number of estimated background events

s Square of the energy in center of Mass

 N_{th} , B_{th} , s_{th} at or close to production threshold

 N_{pk} , B_{pk} , s_{pk} , at peak value

ε total efficiency & acceptance


L Integrated luminosity

M_x: Mass to be determined with high precision.

Y ratio of cross-section σ_{th} and $\sigma_{pk} \rightarrow$ Allows Reduction of systematic uncertainty as well as uncertainties from L measurement.

Remark: yield close to threshold is very sensitive to $M_x \rightarrow$ choice of N_{th} and B_{th} ...

Determination of the Stop Mass

Y=f (M_x) from the theoretical cross-section is be drawn in Red Y from the data the blue line.

As an example, Assume 2% precision for Y, The blue hashed region \rightarrow one obtains \rightarrow Precision $\Delta M_x = \pm 1\%$, the 2 vertical arrows

The Scenario depicted: E_{CM} =260GeV with σ =9.2 fb and σ =77fb at peak

Remark: Assumed luminosities L_{th}=50fb⁻¹ (260 GeV),L_{pk}=500fb⁻¹ (500 GeV)

$$e^+e^- \rightarrow \widetilde{t_1}\widetilde{t_1} \rightarrow c\widetilde{\chi_0}\widetilde{c}\widetilde{\chi_0}$$

- •Analysis uses N-tuple tool incorporating jet finding algorithm (T. Kuhl)
- Soft Multi-jets in the final state
- •Stop Hadronization → the final state jets smeared : due to gluon radiation + fragmentation
- •At ECM=260 GeV mostly 2 jets, carry the charm.
- •At ECM=500 GeV 2jets →2,3,4 jets (more energy available in the CM)

 →the Charm tagging a necessary tool to identify the charm jets (Vertex bench-marking)

Simulation Characteristics

- Signal and Background generated with: Pythia (6.129)
 Simdet (4-0-3)— Circe(1.0)
 - Hadronisation of the c quark and the $\, {\rm \tilde{t}}$ from the Lund string fragmentation Pythia uses Peterson fragmentation

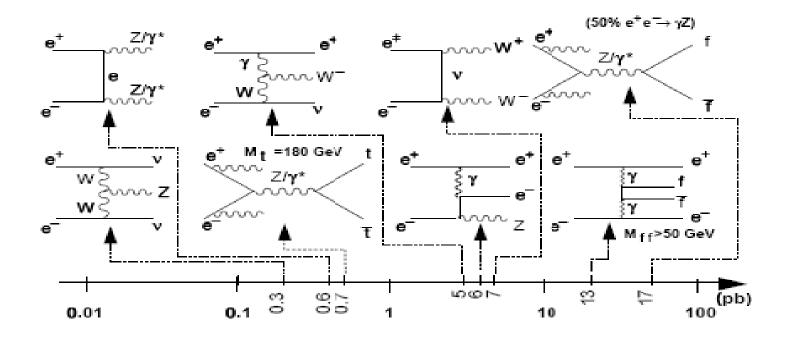
(Peterson et al PR D27:105)

- The \tilde{t} fragmentation is simulated using Torbjorn code //http://www.thep.lu.se/torbjorn/pythia/main73.f The \tilde{t}_1 quark is **set stable** until **after fragmentation** where it is

Allowed to decay again as described in (Kraan, EPJ C37:91)

 Signal and Background are generated in each channel for the given luminosity in conjunction to the cross-sections

Jet Multiplicity – Without/With Fragmentation



- •Stop fragmentation simulated using Torbjorn code //http://www.thep.lu.se/torbjorn/pythia/main73.f
- •The stop fragmentation parameter is set relative to the bottom fragmentation parameter

 $\tilde{\epsilon}\tilde{t}=\epsilon_b^*m_b^2/m\tilde{t}^2$ And $\epsilon_b=-0.0050+/-0.0015$ following (OPAL,EPJ C6:225)

- •The jet Multiplicity <u>without Fragmentation</u> Upper figure
- ~ 70% 2 jets
- •The jet Multiplicity with t Fragmentation
 Lower Figure
- ~ 50% 3 jets
- & bigger admixture of 4jets

Background- Channels @500 GeV

Z Phys. C 76 (1997) 549- A.Bartl, H. Eberl, S. Kraml, W.Majerotto, W.Porod, A. Sopczak

The cross-sections

Process	σ[pb] at ECM=260GeV			σ[pb] at ECM=500GeV		
P(e-)/ P(e+)	0/0	-80%/+60%	+80%/-60%	0/0	-80%/+60%	+80%/-60%
\tilde{t}_1 \tilde{t}_1 *	0.032	0.017	0.077	0.118	0.072	0.276
WW	16.9	48.6	1.77	8.6	24.5	0.77
ZZ	1.12	2.28	0.99	0.49	1.02	0.44
Wenu	1.73	3.04	0.50	6.14	10.6	1.82
eeZ	5.1	6.0	4.3	7.5	8.5	6.2
qq, qq ≠ tt	49.5	92.7	53.1	13.1	25.4	14.9
tt	0.0	0.0	0.0	0.55	1.13	0.50
2γ (p _t > 5 GeV)	786			936		

Table 1

A. Freitas et al EPJ C21(2001)361, EPJ C34(2004)487 and GRACE and COMPHEP -Next to leading order, assuming a stop mixing angle (0.01)

Selection Cuts at E_{CM}=260, 500 GeV

Variable	ECM	ECM
	260 GeV	500 GeV
Number of jets	N _{jets} =2	$N_{jets} \ge 2 \& E_n < 25 \text{ GeV}$
		n=3,4,
Transverse Momentum p _t	p _t > 10 GeV	p _t > 12 GeV
Thrust T	-	T > 0.8
$\cos \theta_{Thrust}$	$ \cos\theta_{\text{Thrust}} < 0.7$	$ \cos\theta_{\text{Thrust}} < 0.7$
Visible Energy E _{vis}	E _{vis} < 0.175 *ECM	E _{vis} < 0.4 *ECM
Acoplanarity Φ _{acop}	$ \Phi_{\rm acop} < 0.9$	$ \Phi_{\rm acop} < 0.9$
Invariant mass of jet pair m _{ij}	25.5 GeV <m<sub>ii <90 GeV</m<sub>	60 GeV <m<sub>ij <90 GeV</m<sub>
Charm tagging likelihood P _c	P _c > 40%	P _c > 40%

Table 2

In order to optimize the cancellation of the systematics we aim to have a selection as similar as possible at the two energies. (cancellation in Y)

The two-photons background did require a 5GeV pt cut.

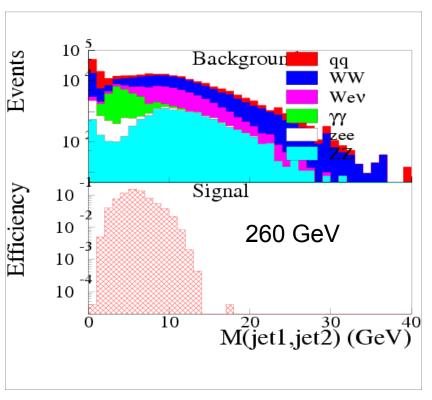
Events Generated and After Sequential cuts

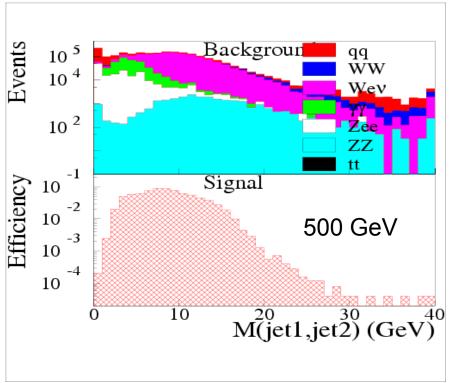
	L=50fb ⁻¹ at ECM=260GeV		L= 500fb ⁻¹ at ECM=500GeV			
P (e-)/ P(e+)	Generated	0/0	+80%/-60%	Generated	0/0	+80%/-60%
$\tilde{t}_1 \tilde{t}_1^*$	50000	382	921 (24%eff.)	50000	11300	26430 (<u>19%eff</u> .)
WW	180000	<5	<1	210000	102	9
ZZ	30000	<2	<2	30000	250	224
Wenu	210000	36	4	210000	10102	2994
eeZ	210000	<1	<1	210000	<18	<15
qq, q≠t	350000	<7	<8	350000	19	22
tt	-	0	0	180000	21	19
2-Photons	1.6 10 ⁶	12	12	8.5x10 ⁶	120	120

Table 3

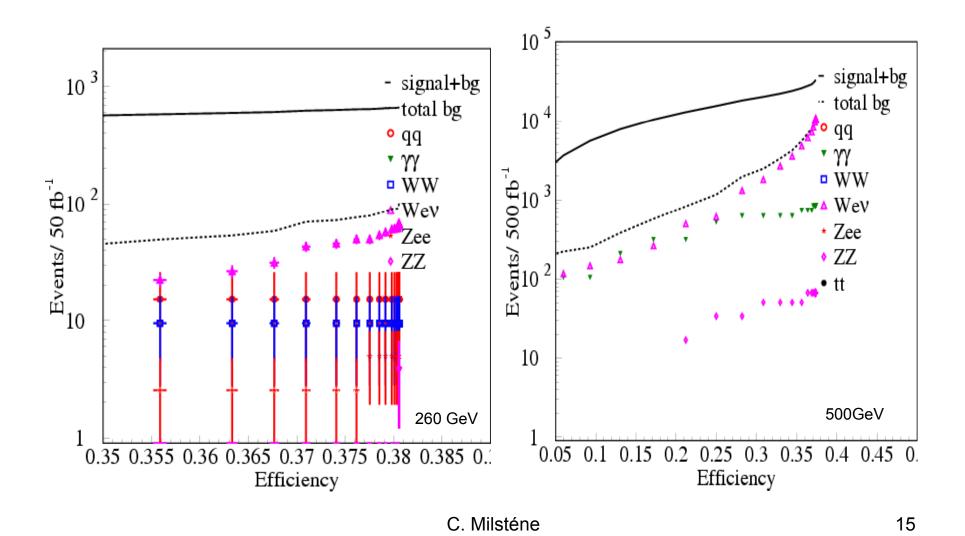
0/0 polarization beam → Unambiguous discovery

+80%/-60% polarization → Precision Measurement


Remark: \tilde{t}_1 fragmentation \rightarrow the separation from the Wenu more difficult


Iterative Discriminant Analysis (IDA)

- Improves even more the precision in the t


 1 mass measurement an
 Iterative Discriminant Analysis (IDA) is used. (modified Fisher Disc. Analysis)
- IDA combines the kinematic variables in parallel. The same variables and simulated events are used than in the cut based analysis. A non linear discriminant function followed by iterations are enhancing the separation between signal and background.
- Both the signal and background have been divided in two equally sized samples, one sample is used for training, the other as data.
- Two IDA steps have been performed, with a cut after the 1st IDA iteration keeping 99% of the signal efficiency.
- The performance is shown in the two next figures at 260 and 500 GeV.

Invariant Mass Di-Jets Before Final IDA

IDA Performance

Events Generated and After IDA Selection

	L=50fb ⁻¹ at ECM=260GeV	L= 500fb ⁻¹ at ECM=500GeV
P (e-)/ P(e+)	0/0 +80%/-60%	0/0 +80%/-60%
$\tilde{t}_1 \tilde{t}_1^*$	610 1470 (38%eff.)	21240 49700 (<u>36%eff</u> .)
WW	19 2	<41 <4
ZZ	7 7	67 60
Wenu	68 39	10640 3155
eeZ	10 8	<36 <30
qq, q≠t	30 32	<38 <43
tt	0 0	<3 <3
2-Photons	<25 <25	840 840

Table 4

The efficiencies improves from 24% ,19% cut based \rightarrow 38% ,36% IDA, while the background is of the same order of magnitude.

Systematic Uncertainty in Kinematics Cuts Variables

	Error on	
Variable	variable	Error on Y
p _t	2%	0.28%
$cos\theta_{Thrust}$	1.8%	0.18%
E_{vis}	2%	0
Φ_{acop}	1%	0.08%
m _{jj}	4%	0.61%

Table 5

- •All cuts are applied to hadronic and jet observables → Calibration quantities are jet energy scale & jet angle.
- •Based on LEP, we assume 2% calibration error for jets, 1 deg for jet angle
- •Effect on signal efficiency: Partial cancellation between 260 and 500 GeV
- •We assume cancellation in total luminosity in Y between 260&500GeV

Effect of Stop and Charm Fragmentation

Comparison of the signal generated with and without gluon radiation

- →The signal efficiency changes due to jet number cut is 2.5%
- →We assume an error of 1% for the number of jets

Charm fragmentation parameters assumed as precise as for LEP/OPAL

$$\rightarrow \epsilon_{c} = -0.0031 \pm 0.011$$

Stop fragmentation is set relative to bottom fragmentation, $\epsilon_{\tilde{t}1} = \epsilon_b (m_b/m_t)^2$

$$\varepsilon_{11} = -0.0050 \pm 0.015$$

They don't cancel between the 2 energies but are small

Including the effects of the fragmentation at both energy points

$$\delta \epsilon_c = \pm 35\% \rightarrow \text{Error } \delta Y = +1.2\% - 0.2\%$$

$$\delta \epsilon_{11} = \pm 30\%$$
 \rightarrow Error $\delta Y = +0.4\% + 2.4\%$

→contribute an error O(few%)

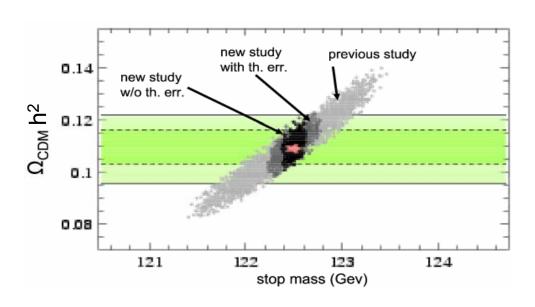
Theoretical Uncertainties

- Precise cross-section calculations are needed
- Stop production receive large corrections from QCD gluon exchange
 Between the final state stops (bigger @Threshold) → Coulomb corr.
- NLO- QCD corrections ~100% @threshold down to 10% at high energies are included here
- NNLO-QCD corrections are expected to be same order than NLO based on the results for the top quark. The missing higher order correction ~7% @260GeV, 2.5% @500 GeV
- It is expected that theoretical uncertainties can be brought down by a factor 2
- Here we assume an uncertainty of 3.5% @260GeV and 1% @500 GeV
- The EW corrections: NLO ~several %, the NNLO ~1%
- Combined → ~4% @260 GeV and 1.5% @500GeV→δY=5.5%

Combined Statistic and systematic Errors

Error source for Y	Cut-based Analysis
Statistical	4.1%
Detector Effects	1.15%
Jet number	1%
Charm Fragmentation	1.2%
Stop Fragmentation	2.4%
Charm tagging algorithm	<0.5%
Sum of Experimental Errors	5.2%
Theory for signal σ	5.5%
Theory for background σ	0.5%
Total error δY	7.2%

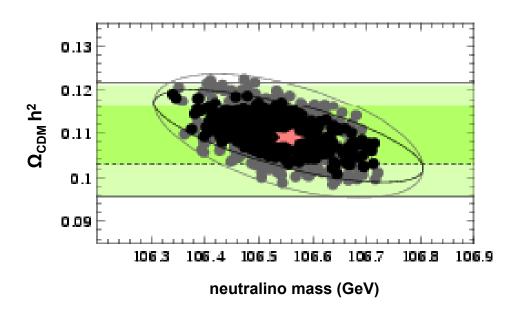
For IDA the determination of *systematic uncertainties* in progress.


Table 6

Results

```
Combining the statistical and systematic errors Table 6(*) \delta Y=7.2\% \rightarrow \delta m_{\tilde{t}1} \sim 0.3 GeV – a factor 4 better (Phys. rev. D 72,115008(2005) (dominated by the theory, expected to improve for signal and background) \delta Y=5.2\% \rightarrow \delta m_{\tilde{t}1} \sim 0.2 GeV (cut based experimental errors alone) \delta Y=4.2\% \rightarrow \delta m_{\tilde{t}1} \sim 0.15 GeV (experimental errors & IDA) (expected)
```

- \rightarrow Improvements in dark matter relic density due to improvement in $\delta m_{\tilde{t}1}$ is shown in the next figure.
 - Other limiting factors start to interplay, e.g. the precision on the neutralino mass $\delta m_{\chi 0}^{-1} \sim 0.3$ GeV ,(hep-ph/0608255, M.Carena, A.Freitas)


Dark Matter Relic Abundance=f(m_{stop})

Dark Matter relic density accounting The estimated experimental errors For stop, Chargino, neutralino and Higgs sector –(scan over 1σ) versus m_{st}^{-1} for $\delta m_{\tilde{t}1}$ =1.2 GeV light gray dot Previous study $\delta m_{\tilde{t}1}$ =0.3 GeV dark gray dot Now this study $\delta m_{\tilde{t}1}$ =0.15GeV black dots Expected this study with IDA

$$\delta m_{st}^{1} = 0.3 \text{ GeV} \rightarrow \Omega_{CDM} \text{ h}^{2} = 0.109 + 0.0013 - 0.010$$

 $\delta m_{st}^{1} = 0.2 \text{ GeV} \rightarrow \Omega_{CDM} \text{ h}^{2} = 0.109 + 0.0012 - 0.009$
 $\delta m_{st}^{1} = 0.15 \text{ GeV} \rightarrow \Omega_{CDM} \text{ h}^{2} = 0.109 + 0.0011 - 0.009$

Relic Abundance as Function of m_{X0}¹

Dark Matter relic density as a function of the neutralino mass accounting for the estimated experimental errors as before but as function of the Lightest neutralino mass $m_{\chi 0}^{-1}$ Gray dots for $\delta m_{\tilde{t}1}^{-1}=0.3$ This study Errors from Experiment+theory Black dots for $\delta m_{\tilde{t}1}^{-1}=0.15$ This Study Experiment. Err. and IDA

δmst1= 0.3 GeV \rightarrow Ω_{CDM} h 2 = 0.109+0.0013-0.010 δmst1= 0.15 GeV \rightarrow Ω_{CDM} h 2 = 0.109+0.0011-0.009 WMAP: Ω_{CDM} h 2 = 0.1106+0.0056-0.0075

Conclusion

- More realistic data were produced including hadronization/fragmentation
- The precision, however, improved by a factor three on our previous analysis with δm_{st}^{1} = 0.3 GeV .
- This method <u>could be applied to other particles</u> e.g. to measure the Higgs mass
- The method improves the precision to the mass determination in two ways
 a/ by reducing the systematics in Y- <u>cancellation</u> between the two energy points.
 b/ by choosing the energy at threshold, Y extremely <u>sensitive to the mass</u>
- Due to hadronization and fragmentation the <u>c-tagging</u> was a <u>necessary tool</u> to identify the charm jets at E_{CM} =500 GeV (benchmark for the vertex detector)
- Systematics in progress for the IDA a multi-parameters analysis, expected improvement to δm_{st}^{-1} = 0.15 GeV
- Progress in the theoretical calculations is expected and partly accounted for
- With that precision we become limited by other factors.
- With this mass precision, the calculated relic density is in accordance with WMAP and SLOAN ,

```
\deltamst1= 0.15 GeV\rightarrowΩCDM h2 = 0.109+0.0011-0.009 WMAP: ΩCDM h 2 = 0.1106+0.0056-0.0075
```

Backup slides

A Sample Parameter Point

```
• m_{\tilde{0}3}^2 = -99<sup>2</sup> GeV<sup>2</sup>

• A_t = -1050 GeV

• M_1 = 112.6 GeV

• M_2 = 225 GeV

• |\mu| = 320 GeV

• \Phi\mu = 0.2

• \tan\beta = 5
```

Which gives:

```
m\tilde{t}_1 = 122.5 \text{ GeV}; m\tilde{t}_2 = 4203 \text{ GeV}; m\tilde{x}_1^0 = 107.2 \text{ GeV}; m\tilde{x}_1^+ = 194.3 \text{ GeV}; m\tilde{x}_2^0 = 196.1 \text{ GeV}; m\tilde{x}_3^0 = 325.0 \text{ GeV}; m\tilde{x}_2^+ = 359.3 \text{ GeV}; \cos\theta\tilde{t} = 0.0105\sim\tilde{t} \text{ right handed}
\Rightarrow \Delta m = 15.2 \text{ GeV}
```