LCWS/ILC 2007, Hamburg

Positron Source Target Development Update

Ian Bailey

University of Liverpool / Cockcroft Institute

Collaborators

STFC Daresbury Laboratory, STFC Rutherford Appleton Laboratory, STFC ASTeC

ANL, DESY, LLNL, SLAC

RDR Parameters Relevant for Target

Centre of undulator to target: 500m

Active (K=0.92, period=1.21mm) undulator length: 147m

Photon beam power: 131kW

First harmonic: 10MeV

Beam spot: >1.7 mm rms

Beam Spot Characteristics

(Simple simulation of a continuous undulator without misalignments, collimation or electron beam jitter.)

Baseline Target Design

• Wheel rim speed (100m/s) fixed by thermal load (~8% of photon beam power)

•Rotation reduces pulse energy density (averaged over beam spot) from ~900J/g to ~24J/g

Cooled by internal water-cooling channel

•Wheel diameter (~1m) fixed by radiation damage and capture optics

•Materials fixed by thermal and mechanical properties and pair-production crosssection (Ti6%AI4%V)

•Wheel geometry (~30mm radial width) constrained by eddy currents.

•20cm between target and rf cavity.

•Axial thickness ~0.4 radiation lengths.

Drive motor and water union are mounted on opposite ends of through-shaft.

Baseline Target Activities

- Design underpinned by simulations
 - Thermal and structural
 - Vibrational and rotordynamics
 - Capture optics effects
 - Activation and radiation damage
 - (see talk by Andriy Ushakov)
 - (Polarisation transfer)
- (Remote-handling solutions)
- Alternative target materials
- Target prototyping

Thermal Studies

Undulator photon beam target temperature, C, 100 m/s wheel rim velocity

TOPAZ-3D and **DYNA-3D** simulations

 Rapid energy deposition generates a pressure shock wave

 Maximum stress is experienced at the back surface of the target

 For older beam parameters (small beam spot), peak stress was ~4x10⁸Pa

 This is a factor of two below the yield stress

 Simulation is being reevaluated with updated parameters and target design at LLNL.

Activation Simulations

- Majority of work is being carried out at DESY (see Andriy Ushakov's talk)
- At DL new target geometry (mostly) migrated to FLUKA
- T-489 FLUKA benchmarking experiment carried out at CERN / SLAC
- Simulations will begin at DL shortly to augment DESY

Eddy Current Modelling

- Capture optics induce eddy currents in the target wheel.
- Eddy current simulations have been carried out by LLNL, Cornell, ANL(FEMLAB) and RAL (OPERA):
 - SLAC Cu disc experiment
 - 2m diameter wheel (older design), s/c OMD field
 - 1m diameter wheel, 1T field, up to 2000rpm
- 2m results were presented at Beijing Positron Source meeting in Jan '07
 - Eddy current power losses of order 100kW
 - ~factor 4 difference in results from RAL and ANL
- Agreed to study 1m diameter wheel using standardised geometry and parameters.

1m Wheel Eddy Current Simulations

Ceramics as Alternative Target Materials

		Reference	Materials	Machina	able Ceramics	Nitrides				
		Titanium Alloy Ti-6Al-4V Grade 5 Annealed	im 4V Isotropic 5 IG-43 "Macor" Machinable Glass- ceramic "Shapal-M" Machinable Aluminium Nitride		AlN Aluminium Nitride	Si ₃ N ₄ Silicon Nitride (Hot Pressed)	"Sialon" Solid Solution	BN Boron Nitride		
Heat Capacity	J/kg. K	526	711 @24℃ 2092 @997℃	790	480	800	680 - 800	620 - 710	800 - 2000	
Exp <mark>ansion</mark> Coefficient	/K	8.6-9.7 x 10 ⁻ 6	4.8 x 10 ⁻⁶	13 x 10 ⁻⁶	5.2 x 10 ⁻⁶	4.4 x 10 ⁻⁶	3.3 x 10 ⁻⁶	3.3–3.7 x 10 ⁻⁶	1 – 36 x 10 ⁻⁶	
Density	Kg/ m ³	4430	1820	2520	2950	3330	3110	3240	1900 - 2200	
Radiation Length	mm	41	235		93	83	85		211	
Thermal Conductivity	W/m .K	6.7	140	1.46	100	175 - 190	15 - 43	20	15 – 50	
Ele <mark>ctrical</mark> Res <mark>istivity</mark>	Ohm .m	1.78 x 10 ⁻⁶	9.2 x 10 ⁻⁶	>1012	1.8 x 10 ¹¹	>1011	>10 ¹⁰	>10 ¹⁰	>109	
Max. Use Temperature	°C	Melting Point ~1600		800	1000 – 1900 In non-oxidising atmosphere	1000 – 1800 In non-oxidising atmosphere	1100 - 1650	1000	950 - 2500	
Tensile Strength	MPa	Yield 880 UTS 950	37				400 - 580	400 - 450		
Compressive Strength	MPa	Yield 970	90	345	1000		2000 - 3500	3500	30 - 120	
Elastic Modulus	GPa	114	10.8	67	160		280 - 310	280 - 300	20 - 35	

P. Loveridge, RAL

Ceramics as Alternative Target Materials

			Ca	rbides		Oxides				
		B ₄ C Boron Carbide (Hot Pressed)	SiC Silicon Carbide (Reaction Bonded)	SiC Silicon Carbide (Hot Pressed)	WC 94 / Co 6 Tungsten Carbide / Cobalt	BeO 99.5% Beryllia	Al ₂ O ₃ 99.9% Alumina	ZrO ₂ / MgO Zirconia (Magnesia stabilised)	YO 99.9% Yttrium Oxide	
Heat Capac <mark>ity</mark>	J/kg. K	950	1100	670 - 710	200 - 480	1020 - 1120	880	400 - 500		
Expan <mark>sion</mark> Coeffi <mark>cient</mark>	/K	5.6 x 10 ⁻⁶	4.3–4.6 x 10 ⁻ ₆	4.5 x 10 ⁻⁶	4.6–5.0 x 10 ⁻⁶	8.4–9.0 x 10 ⁻⁶	8.5 x 10 ⁻⁶	5 – 10 x 10 ⁻⁶	8.1 x 10 ⁻⁶	
Densit <mark>y</mark>	Kg/m ³	2500	3100	3150	14950	2860	3900	5740	5030	
Radiation Length	mm	201	83	81	6	144	72		23	
Thermal Conductivity	W/m. K	30 - 90	150 - 200	90 - 160	60 - 80	260 - 300	28	1.5 – 2.5	8 - 12	
Electr <mark>ical</mark> Resistivity	Ohm. m	0.001 - 0.1	1 - 10	10 - 1000	2 x 10 ⁻⁸	>10 ¹²		See note	10 ¹²	
Max. <mark>Use</mark> Temperatur e	°C	600 - 800	1350	1500 - 1650		1800 - 1900	1900	1000	Melts at ~2400 °C	
Tensil <mark>e</mark> Streng <mark>th</mark>	MPa	350	310	400	1440			>300		
Compressive Strength	MPa	1400 - 3400	2000 - 3500	1000 - 1700	5300 - 7000	1550 - 1850	>2500	1500 - 2000		
Elastic Modulus	GPa	440 - 470	410	200 - 500	600	340 - 400		200	170	

P. Loveridge, RAL

Prototype Target Wheel Experiment

- Aim to construct and test a prototype to establish the mechanical stability of the target wheel assembly in the field of a strong magnet (~1T).
- Does not include internal water-cooling channels.
- Does not include vacuum vessel or vacuum testing.
- Due to begin assembly of wheel at DL in Summer '07.
- Commissioning and balancing of the prototype wheel should be complete September '07.
- Experiment scheduled to finish May '08.
- Will benchmark eddy current and rotordynamic simulations.
- Originally envisaged as the first stage of a series of prototypes...depending on funding.

Target Prototype Design Mechanical stability and eddy current tests

•1m diameter Ti6%Al4%V wheel with slightly simplified structure compared to current baseline target wheel.

 Prototype consistent with baseline vacuum feedthrough and water cooling designs.

Motor being sized for angular velocities up to ~2000rpm.

 Construction at DL scheduled to be complete in August 2007.

•Expect eddy current power losses up to ~10kW.

Sectional view

Prototype Target Wheel (with Belt Drive)

Equilibrium temperature of wheel in air using 1.5T field at 2000rpm ~ 500K !

Shows vacuum feedthroughs replaced with cheaper (and stiffer) Plummer block assemblies.

It has not yet been decided whether to use a direct-drive or belt-drive motor.

Instrumentation includes: torque sensor, remote temperature gauges and accelerometers.

Target Prototyping Status

- Project is funded
- Space has been allocated at DL
- Magnet has been sourced
 - model 3474-140 GMW water-cooled electromagnet
 - variable pole gap (0mm->160mm)
- Design should be complete ~mid-June
- Design consistent with
 - Water-cooled rotating vacuum feedthroughs (Rigaku RMS-F1-HS-50-W-C MagnaSeal)
 - Rotating water union (Deublin 55 series)
- Instrumentation and DAQ being designed (Andy Gallagher DL, Leo Jenner Liverpool)
- Draft document outlining experimental programme has been written and circulated

FLUKA Photon Collimator Simulations

Summary and Future Activities

SIMULATIONS

- Thermal + structural
 - Updated studies underway at LLNL
 - Larger beam spot may relax constraints on wheel speed
- Rotordynamics
 - Ongoing studies for both prototype wheel and baseline design
- Capture optics effects / eddy currents
 - Need to resolve mismatch between RAL and ANL results.
 - Simulations of pulsed magnets and CARMEN simulation of spoke effects are expected soon.

REMOTE-HANDLING

- Current vertical r.h. design will be written up as a report Summer '07
- Little UK funding available to fund this activity at RAL for the coming financial year.

TARGET-PROTOTYPING

- •Design for prototype to measure eddy current effects in target rim is well-advanced.
- •Solutions need to be found to keep the magnet cool when operating at high field (radiative and conductive heating of pole caps).
- Instrumentation needs to be finalised.Experiment should be taking data in Autumn '07.