Calorimeters of the Very Forward Region

Iftach Sadeh

Tel Aviv University DESY

March 5th 2008

Layout of the Forward Region

ECal and Very Forward Tracker acceptance region.

40 mrad

5 mrad

- Precise measurement o the Integrated Luminosity ($\Delta L/L \sim 10^{-4}$).
 - Provide 2 photon veto.

- BeamDiagnostics using beamstrahlung pairs.
- Provide 2 photon veto.

GamCal

BeamDiagnostics using beamstrahlung photons.

Challenges:

High precision, high occupancy, high radiation dose, fast read-out!

Overview

- Compact EM calorimeter with sandwich structure:
 - 1. 30 layers of 1 X_0 : 3.5 mm W and 0.3 mm sensor.
 - 2. Angular coverage from ~ [5,40] mrad
 - Moliére radius (R_M) ~ 1 cm
 - 4. Segmentation between 0.5 and 0.8 x R_M.

Functionality:

- 1. Provide electron veto.
- 2. Perform beam diagnostics for a feedback loop on luminosity optimization.
- 3. Shield the inner part of the detector from upstream backscattered particles..

Electron veto

- Two photon events constitute the most serious background for many search channels which are characterized by missing energy and missing momentum.
- **Example**: stau/smuon production:
 - 1. Large SM background:

$$\gamma^* \gamma^* \rightarrow \tau^+ \tau^- (E_t > 4.5 \text{GeV})$$
 $\sigma \sim 4.3 \cdot 10^5 \text{ fb}$
 $\rightarrow \mu^+ \mu^- (E_t > 2 \text{GeV})$ $\sigma \sim 5.2 \cdot 10^6 \text{ fb}$
 $\rightarrow WW$

$$e^+e^- \rightarrow \mu^+\mu^-$$
, τ^+ $\tau^ \sigma \sim 1.0 \cdot 10^3 \text{ fb}$ \rightarrow WW

- 2. Some cuts based on event topology & kinematics help, but are not enough due to the high background cross-section.
- 3. Missing energy (the neutralino (LSP?)).
- 4. The difference between SUSY and the SM background is the final state electron.

Backgroung

Electron veto

Beam diagnostics

Beam parameters:

beam sizes (σx , σy and σz) emittances (ϵx and ϵy) offsets (Δx and Δy) waist shifts (ϵx and ϵy) angles and rotation (ϵx) and ϵy) Particles per bunch (Nb)

Observables:

total energy
first radial moment
thrust value
angular spread
E(ring ≥ 4) / Etot
r-φ observables T1, T2
E / N
l/r, u/d, f/b asymmetries

Moore Penrose Method

"Diagnostics of Colliding Bunches from Pair Production and Beam Strahlung at the IP"

- Achim Stahl (LC-DET-2005-003)

Performance requirements

1. Required precision is: $\frac{\Delta L}{L} \sim 10^{-4}$, GigaZ (hadronic Z decays) 10^9 / year $\frac{\Delta L}{L} \sim 10^{-3}$, $e^+e^- \rightarrow W^+W^ 10^6$ / year $\frac{\Delta L}{L} \sim 10^{-3}$, $e^+e^- \rightarrow q^+q^ 10^6$ / year

 Measure luminosity by counting the number of Bhabha events (N):

Bhabha Event Rate E = 500 GeV 60 60 40 20 10 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Omap [rad]

$$N = rac{L}{\sigma}$$
 $\frac{d\sigma_{Bhabha}}{d heta} \propto rac{1}{ heta^3}$ $\frac{\Delta L}{L} = rac{\Delta N}{N} = rac{N_{rec} - N_{gen}}{N_{gen}} \bigg|_{ heta_{min}}^{ heta_{max}}$

Design parameters

1. Placement:

- 2270 mm from the IP.
- Inner Radius 80 mm
- Outer Radius 190 mm

2. Segmentation:

48 sectors & 64 cylinders:

Azimuthal Cell Size - 131 mrad

Radial Cell Size - 0.8 mrad

3. Layers:

- Number of layers 30
- Tungsten Thickness 3.5 mm
- Silicon Thickness 0.3 mm
- Elec. Space 0.1 mm
- Support Thickness 0.6 mm

Selection of Bhabha events

4.5

Acoplanarity

Energy

$$E_R - R_L < 0.1 \times \min(E_R, R_L)$$

Compare Angles

$$\Delta\theta \equiv \theta_{\text{RIGHT}} - \theta_{\text{LEFT}}$$

Simulation distribution

Distribution after acceptance and energy balance selection

Physics Background

 Four-fermion processes are the main background, dominated by two-photon events (bottom right diagram).

The cuts reduce the background to the level of 10⁻⁴

Beam-Beam effects at the ILC

- High beam-beam field (~kT) results in energy loss in the form of synchrotron radiation (beamstrahlung).
- 2. Bunches are deformed by electromagnetic attraction: each beam acting as a focusing lens on the other.

Change in the final state polar angle due to deflection by the opposite bunch, as a function of the production polar angle.

■ Since the beamstrahlung emissions occur asymmetrically between e+ and e⁻, the acolinearity is increased resulting in a bias (reduction) in the counting rate.

"Impact of beam-beam effects on precision luminosity measurements at the ILC"

Systematic Effects – Placement

- Headon, 14,20 mrad X-angle outgoing beam
- 14 mrad X-angle detector axis
- 20 mrad X-angle detector axis
- Small tilts/shifts cause large φdependant errors in the Luminosity measurement.
- Azimuthal symmetry is lost when LumiCal is placed along the detector axis
- → Choose the **outgoing beam** option.

Machine background (Magnetic Field)

- Negative effect of grazing LumiCal with the pair distribution:
 - Radiation damage to the silicon sensors ~O(MGy/year).
 - Detrimental to the Luminosity measurement.
 - Backscattering to the inner part of the detector.

Detector Performance

Cell size [mrad]	# Radial divisions	σ(θ) [mrad]	Δθ [mrad]	2·Δθ/ θ _{min}
0.5	96	1.8 · 10 ⁻²	1.3 · 10 ⁻³	0.6 · 10 ⁻⁴
0.8	64	2.3 · 10-2	3.4 · 10 ⁻³	1.7 · 10-4
1	48	2.7 · 10-2	6.9 · 10 ⁻³	3.1 · 10-4
1.5	32	3.5 · 10 ⁻²	13.7 · 10 ⁻³	6.2 · 10 ⁻⁴
2	24	4.4 · 10 ⁻²	24 · 10 ⁻³	10.9 · 10 ⁻⁴

$$\frac{\Delta L}{L} \approx \frac{2\Delta\theta}{\theta_{\text{min}}}$$

$$\sqrt{s} = 500 \,\text{GeV}$$

$$L = 500 \,\text{fb}^{-1}$$

$$\sigma = 1.23 \,\text{nb}$$

$$\frac{\Delta N}{N} = 4 \cdot 10^{-5}$$

Silicon Tracker

- Tracker parameters (still being optimized...): 2 silicon layers, 5 cm gap between layers, 0.3 mm silicon thickness, 1000 azimuthal divisions, 1600 radial divisions.
- Use Tracker information to correct the Calorimeter reconstruction of the polar angle, θ.

MIP (muon) Detection

- Many physics studies demand the ability to detect muons (or the lack thereof) in the Forward Region.
- **Example**: Discrimination between super-symmetry (SUSY) and the universal extra dimensions (UED) theories may be done by measuring the smuon-pair production process. The observable in the figure, θ_{μ} , denotes the scattering angle of the two final state muons.

UED:
$$\frac{e^+ e^- \rightarrow \mu_1^+ \mu_1^- \rightarrow \mu^+ \mu^- \gamma_1 \gamma_1}{\frac{d\sigma}{d\cos\theta}} \sim 1 + \cos^2\theta$$

SUSY:
$$e^{+}e^{-} \rightarrow \tilde{\mu}^{+}\tilde{\mu}^{-} \rightarrow \mu^{+}\mu^{-}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$$
$$\frac{d\sigma}{d\cos\theta} \sim 1 - \cos^{2}\theta$$

MIP (muon) Detection

- Multiple hits for the same radius (non-zero cell size).
- After averaging and fitting, an extrapolation to the IP (z = 0) can be made.

Extrapolation of a muon track to the IP

R(Z) - Energy-averaged Z position

EM Shower Properties

Double-shower energy profile

LumiCal: Bhabha reconstruction - Clustering

- 1. Perform initial 2D clustering in shower-peak layers.
- 2. Extrapolate "virtual cluster" CMs in non shower-peak layers, and build real clusters accordingly.
- 3. Build (global) 3D "super clusters" from all 2D layer clusters.
- 4. Check cluster properties (e.g. percentage of energy within a Molière Radius), and (attempt to) re-cluster if needed.
- 5. Correct cluster-energy distributions.
- Events were generated with BHWIDE(1.04) and simulated by Mokka(v06-05-p02) using Geant4(v4-09-00-patch-01). The super-driver LumiCalX of the LDC(00-03Rp) model was used to build LumiCal in Mokka.
- The clustering algorithm was written as a Marlin processor, using Marlin(v00-09-08).

Clustering - Molière Radius corrections

Inside a cluster's
 Molière radius should
 be found ~90% of the
 cluster's total energy.

Percentage of Cluster Energy Within Its Moliere Radius

240
240
220
200
180
-240 -220 -200 -180 -160 -140 -120 -100 -80

X [mm]

 Two clusters (blue & red full circle) are merged by mistake (black hallow circle).

20

Clustering – Energy Corrections

m oither cluster are projected into a

- Hits from either cluster are projected into a coordinate system where the X-axis connects the two cluster centers.
- The difference between the reconstructed and generated clusters is apparent in the area where the two clusters are inter-mixed.

Clustering – Algorithm performance

Photons which were not found.

Miss-Clustering

Miss-Separation

Fake photons.

Clustering – Algorithm performance

Cut		Dhatana which	Relative errors		
Moliere radius [%]	Minimal Energy [GeV]	Photons which are available for reconstruction [%]	Miss Separating [%]	Miss Clustering [%]	Total error for 500 fb ⁻¹
75	20	5.4	7.6 · 10 ⁻²	15.5	7.0 · 10 ⁻⁵
75	25	4.7	6.0 · 10 ⁻²	15.7	7.6 · 10 ⁻⁵
150	20	4.5	4.0 · 10 ⁻²	0	5.8 · 10 ⁻⁷
100	20	5.3	7.1 · 10 ⁻²	3.8	4.0 · 10 ⁻⁵
100	25	4.6	5.6 · 10 ⁻²	4	4.4 · 10 ⁻⁵

 Selection of different cuts on minimal cluster energy and on separation distance between the cluster pair results in different counting errors.

EXTRA SLIDES

Systematic Effects

Geometry – Inner & outer radii

$R \to R$	Fiducial volume		σ	Relative Error	
$R_{min} \rightarrow R_{max}$ [mm]	θ _{min} [mrad]	θ _{max} [mrad]	O _{Bhabha} [nb]	ΔΝ/Ν	2·Δθ/ θ _{min}
60 → 170	33	59	2.58	2.8 · 10 ⁻⁵	2.1 · 10-4
70 → 180	37	64	1.98	3.2 · 10 ⁻⁵	1.8 · 10 ⁻⁴
80 → 190	41	69	1.23	4 · 10 ⁻⁵	1.7 · 10-4
90 → 200	50	74	0.86	4.8 · 10 ⁻⁵	1.4 · 10 ⁻⁴

The fiducial volume sets bounds that prevent leakage through the sides and back of LumiCal, thus insuring shower containment.

$$\sqrt{s} = 500 \text{ GeV}$$
 $L = 500 \text{ fb}^{-1}$
, $L = \frac{N}{\sigma_{\text{Bhabha}}}$

Clustering – Energy Corrections

■ The procedure: Some of the energy from hits which are associated with the small-energy cluster is allocated to the high-energy cluster. Exactly how much is determined according to the energy distribution of the large-energy cluster on the left (negative) side, where the cluster inter-mixing is negligible.

Instant Luminosity Measurement

- Use as much information about the collision as possible.
- BeamCal measures the energy of pairs originating from beamstrahlung.
- GamCal will measure the energy of the beamstrahlung photons.
- Define a robust signal proportional to the luminosity which can be fed to the feedback system.

- Ratio of E_pairs/E_gam vs offset_y is proportional to the luminosity.
- similar behaviour for angle_y, waist_y ...

Ratio of Energies (BCAL)

LumiCal: Clustering – Algorithm performance

Cuts					
Moliere radius [%]	Minimal Energy [GeV]	Acceptance [%]	Purity [%]	Efficiency [%]	
75	20	84	96	88	
75	25	84	96	87	
150	20	100	97	1.03	
100	20	96	96	100	
100	25	96	97	99	

Cut		DI (1:1	Relative errors		
Moliere radius [%]	Minimal Energy [GeV]	Photons which are available for reconstruction [%]	Miss Separating [%]	Miss Clustering [%]	Total error for 500 fb ⁻¹
75	20	5.4	7.6 · 10 ⁻²	15.5	7.0 · 10 ⁻⁵
75	25	4.7	6.0 · 10 ⁻²	15.7	7.6 · 10 ⁻⁵
150	20	4.5	4.0 · 10 ⁻²	0	5.8 · 10 ⁻⁷
100	20	5.3	7.1 · 10 ⁻²	3.8	4.0 · 10 -5
100	25	4.6	5.6 · 10 ⁻²	4	4.4 · 10 ⁻⁵