Report about "Forward Instrumentation" Issues

W. Lohmann 3/06/2008 DESY

- Physics issues
- · Calorimetry, Pair Monitor
- Tracking
- · Particle ID

Physics issues:

Measurement of the Luminosity, I. Sadeh

Impact on SUSY searches (valid for all signatures with "large missing momentum and small depositions in the Calorimeter), T. Rizzo, Z. Zhang

The measurement of the luminosity is a prerequisite for any cross section measurement!

Required precision is:

$$\frac{\Delta L}{L} \sim 10^{-4}$$
 , GigaZ (hadronic Z decays) 10^{-9} / year $\frac{\Delta L}{L} \sim 10^{-3}$, $e^+ e^- \to W^+ W^- = 10^{-6}$ / year $\frac{\Delta L}{L} \sim 10^{-3}$, $e^+ e^- \to q^+ q^- = 10^{-6}$ / year

2. Measure luminosity by counting the number of Bhabha events (*N*):

$$N = \frac{L}{\sigma}$$
 $\frac{d\sigma_{Bhabha}}{d\theta} \propto \frac{1}{\theta^3}$ Input from theorists needed!

Definition of a fiducial volume needs a precison device

SUSY particles

Since we don't know how SUSY is broken-study of 242 points in the MSSM parameter space

mSUGRA Scenario D', small Δm :

- → High electron VETO efficiency at small polar angles is mandatory
- > improvent possible in case of mip detection capability at small polar angle

Calorimetry, Pair Monitor:

Forward Calorimeters, I. Sadeh

Pair Monitor: K. Ito, R. Sasaki

Layout of the Forward Region

- Precise measurement o the Integrated Luminosity (ΔL/L ~ 10⁻⁴).
 - Provide 2 photon veto.

- BeamDiagnostics using beamstrahlung pairs.
- Provide 2 photon veto.

BeamDiagnostics using beamstrahlung photons.

Challenges: High precision, high occupancy, high radiation dose, fast read-out! LumiCal, BeamCal: compact sampling calorimeters, R_M~1 cm

BeamCal

3/6/2008

ACFA Linear Community Vyorkshop, Sendai

LumiCal

Detaild studies on granularity, systematics, background
New: cluster separation for $e^+e^-\gamma$

Mip detection capability

3/6/2008

ACFA Linear Collider Workshop, Sendai

9

Pair Monitor

Design and prototyping of a readout chip, first tests successful

- · Produced by MOSIS
- CMOS 0.25 μm process by TSMC
- Size of chip: 4x4 mm²
- Size of readout pixel: 400x400 μm²

Measurement of the flux density in front of BeamCal to determine beam parameters σ_x , σ_v

3/6/2008

ACFA Linear Collider Workshop, Sendai

Tracking

Silicon pixel tracker, K. Stefanov

Optimisation studies: W. Mitaroff

TPC endcap material budget: T. Matsuda

Tracking Performance: M. Vos

Silicon Pixel tracker

Replace strip detectors by pixel devices, CCD or MAPS

CCD: integration of a full bunch train,

MAPS: Time slicing or bunch stamping possible

- 70 m² tracker with 50×50 µm² pixels, 28 Gpixel system
- Total power dissipation (CCD) ≈ 600 W (0.86 mW/cm²)

Higher occupancy in the forward region may require MAPS technology;

First experience with the CALICE ASIC1 for MAPS-based ECAL (designed at RAL)

- Functionally very close to bunch stamping tracker
- 50 μ m \times 50 μ m pixels on 0.18 μ m CMOS process
- Targets S/N > 10, preliminary S/N = 6.5

Power dissipation might be an issue. R&D necessary

Forward Tracking Optimistion

Using a fast simulation several tracker geometries and pixel sizes are studied

- An additional disc at z = 2160 mm
- Clear improvement of momentum resolution of tracks missing the TPC
 - (Those tracks also miss the Vertex Detector and the innermost Forward Pixel Disc!)
 - 15% gain for low pt
 - 20% gain for high pt
- · Same impact of material budget and pitch as before
 - therefore adding an 8th disc is not yet an "overinstrumentation"

TPC Endcap Material Budget

Tracking Performance in the Forward Region

Readout after < 10 BX 3/6/2008

Large distance (10-30 cm) between disks lead to large extrapolation errors, particular forlow momentum tracks

 $\Delta(1/p_{+})=0.9\times10^{-3}\oplus0.8\times10^{-2}/p_{+}$

ACFA Linear Collider Workshop, Sendai

15

Coordinated effort in Spain ongoing

Particle ID performance: M. Ohlerich

Tracking Performance in the Forward Region

Electron momentum measurement is less performant, due to bremsstrahlung in the detector material

Particle ID performance

Electron, Muon, Pions, Photons, Higgs-strahlung sample

ID efficiency vs θ

ID purity vs θ

Electron sample contains photons, due to conversions, Pion sample also contaminated by photons because of high particle density in jets