Calorimeter Summary

S. Uozumi (Kobe)

Mar 2-7 TILC08@Sendai

Many interesting talks:

- CALICE Scintillator-W ECAL
 - DESY BT analysis (D. Jeans)
 - Scintillator-strip performance (M. Nishiyama)
 - MPPC radiation resistivity (T. Ikuno)
- CALICE Silicon-W ECAL
 - Testbeam results (R. Poeschl)
 - MAPS ECAL (Y. Mikami)
- CALICE Scintillator HCAL
 - Calibration and Readout (F. Sefkow)
 - IRL for Scintillator-HCAL (V. Zutshi)
- Dual-readout calorimeter for 4th
 - Testbeam result and simulation (J. Hauptman)

CALICE Scintillator-W ECAL

A ScECAL prototype has been exposed to 1-6 GeV e+ beam at DESY 03/07

Scintillator-W ECAL BT results

produced 3 half-modules (13 layers each) with different scintillator types

tested 3 configurations

Kuraray (fibre) + Kuraray (direct)

Kuraray (direct) + Kuraray (fibre)

Extruded (fibre) + Kuraray (fibre)

compare performance of configurations

Improved scintillator-strip test @ KEK e+ beamline

Beam position (mm)

Silicon-W ECAL

Si-W ECAL: Beam Test Result (Energy Resolution)

Statistical Term independent of "Sampling Factors"

Good description by Monte Carlo

– Mokka/G4

Correct weighting under investigation

High Energy
Points
measured at
CERN
Summer/Autum
n 06

SiW-Ecal: Beam Test Result

Dips in energy measurement by inter wafer gaps (needed for isolation)

Need to take geometrical acceptance into account

MAPS (Monolythic Active Pixel Sensor) ECAL

- Extremely fine segmentation (cell size $\sim 50 \times 50 \mu m$)
- Very low hit occupancy
- Low cost solution in Si-W ECAL
- Charge accumulated in diffusion effect
- Dead area ~ 11 %

MAPS ECAL: Laser Scan (Preliminary)

Focussed Laser

- 4ns pulse at 1064nm wavelength
- Focussed to 4x4 μm² on rear of sensor
- Uncalibrated analogue signal
- Step by 5μm in x and y
- Record & plot signal size for each position

12μm epitaxial-layer + Deep P-well

MAPS ECAL: DESY Beam Test (Dec 2007) First test with 1-6GeV e+ with 4 layers

Example for X correlation plot of two layers (Very preliminary)

CALICE Scintillator HCAL

Current Prototype:

- Steel scintillator sandwich
- 38 layers, 2cm steel absorbers
- Scintillator tiles 3x3x0.5cm³
- 7608 SiPMs (MEPhI / Pulsar)

Technical prototype

(near future)

- Realistic structure with embedded electronics
- Realistic test with calibration system, absorber mechanics with minimal cracks

Auto-calibration

- With single photo-electron (pixel) peaks the pixel photo-diode provides its own reference scale
- Promising tool for monitoring temperature-induced response variations
- Opens possibilities for further simplification of calorimeter design
 - No external reference
 - Small amplitudes
 - Loose stability requirements
- Stability of saturation correction
 - Under study, so far OK

LED on board

 Attractive option - if auto-calibration of SiPM sufficient

 Proof-of-principle test borad, check for cross-talk, uniformity,

New ASIC on the test benches

- Auto-triggering and time measurements
- ADC and TDC integrated
- Power pulsing, low (continuous)

IRL for CALICE Scintillator-HCAL

Dual-readout calorimeter : Beam Test

DREAM: Structure

- Depth 200 cm (10.0 $\lambda_{\rm int}$)
- Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
- Mass instrumented volume 1030 kg
- Number of fibers 35910, diameter 0.8 mm, total length ≈ 90 km
- Hexagonal towers (19), each read out by 2 PMTs

DREAM data: 200 GeV π energy response

Scintillating (S) fibers only

Dual-readout of S and Cerenkov (C)

$$f_{EM} \square (C/E_{shower} - 1/|_C)$$

(4% leakage + neutron BE loss fluctuations, and limited by photoelectron statistics in C)

Dual-readout of S and C:

$$f_{EM} \square (C/E_{beam} - 1/|_{C})$$

(suppresses leakage and BE fluctuations; too optimistic)

Data NIM A537 (2005) 537.

We are measuring (DREAM) and calculating (ILCroot) (i) neutrons, (ii) a full ILC detector, (iii) Cerenkov pe statistics, and (iii) two different crystals, to understand and improve this.

Summary

- Very successful CAL sessions, many reports, useful discussions.
- Each talk shows much updates and good prospects.
 - Analysis of several beam tests extensively ongoing.
 - Many groups expect to have beam tests.
- Many more interesting results are expected in this "Beam-test year"!