SUSY Analysis with Full Simulation

Contents:

- 1. Introduction
- 2. Analysis Procedure
- 3. Smuon-pair Production
- 4. Chargino-pair Production
- 5. Summary

TILC08 @ Tohoku Univ., Sendai Mal 5th, 2008

> Tamaki Yoshioka ICEPP, Univ. of Tokyo

Introduction

- LHC would discover SUSY or missing-energy phenomena.
- SUSY Study @ ILC : Precise measurements of sparticle properties.
- ILC + LHC : Determine underlying SUSY model and SUSY breaking mechanism.

- Fast MC studies at JLC/GLC era exist.
- Towards LoI : Physics studies with full simulation.
- First step : Perfrom same analysis with full simulation.

Generated Events

- Helas based generator
- BSGEN : A generator of beamstrahlung spectrum
- Beam ploarization : P(e-) = 90%
- $e^+e^- \rightarrow \tilde{\mu}_R^+ \tilde{\mu}_R^- @ 500 \text{GeV}$
 - (M0, μ , M1/2, tan β) = (70, 389, 250, 10)
 - smuon mass : 144.37GeV
 - neutralino mass : 121.59GeV
 - Luminosity : 55fb-1
- $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- @ 500 \,\mathrm{GeV}$
 - (M0, μ , M1/2, tan β) = (206, 375, 243, 10)
 - chargino mass : 222.63 GeV
 - neutralino mass : 117.96 GeV
 - Luminosity : 100 fb-1

Simulation/Reconstruction

- Simulation : Jupiter
 - Geant4.9.0p1 and LCPhysicsList w/ GLD geometry
- Reconstruction : ilcsoft v01-03
 - FullLDCTracking + PandoraPFA v02-01
- Analysis : Physsim
 - Developed for fast MC data. PFO based analysis.

4

Event Displays

• Typical event display for both smuon-pair and chargino-pair production processes.

Smuon Pair-Production Process

- Smuon pair-production process : $e^+e^- \rightarrow \tilde{\mu}_R^+ \tilde{\mu}_R^- \rightarrow (\mu^+ \tilde{\chi}_1^0)(\mu^- \tilde{\chi}_1^0)$
- Signal signature : 2 lepton + Pt missing.
 - Polarized electron beam is effective.
 - Signal x 2
 - Background (WW) ~ 0 after θ_{acp} cut

*μ*_R[±] / *χ*₁⁰ mass can be determined from muon energy distribution after all selection criteria.
 → Test of tracker momentum resolution

Fitted Function

• Muon energy distribution is fitted by an empirical function.

Smuon Pair (FullLDCTracking)

• Muon energy distribution is fitted by an empirical function.

Smuon Pair (TrackCheater)

• For comparison, same analysis was done by TrackCheater.

9

Chargino Pair-Production Process

- Chargino pari-production process
 : e⁺e⁻ → *˜*₁⁺*˜*₁⁻ → (W⁺*˜*₁⁰)(W⁻*˜*₁⁰)
 Signal signature : 4-jet + Pt missing.
- Acoplanarity cut is also effective to reduce backgrounds.

ACFA Report (hep-ph/0109166) 60 $e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^-$ 50 $\sqrt{s} = 500 \text{ GeV}$ 50 fb^{-1} RG 40 #Events eeWW vvWW, evWZ, 30 WWZ BG 20 SIGNAL 10 0 50 100 150 0 Cut $\theta_{acop}(deg.)$

Chargino Pair-Production Process

• W energy distribution is fitted by an empirical function.

Summary

- Study of SUSY channels (smuon and chargino pair-production) with full simulation has been started.
 - Analysis path : Jupiter \rightarrow MarlinReco/PandoraPFA \rightarrow Physsim
 - Results are almost comparable to the fast MC study although background is not included in this study.
 → can be used for detector optimization study.
- Next step :
 - Include background.
 - Try other detector model (GLD prime, LDC like etc.)