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Pixel Detector
• Pixel detector requirements

– Transparency: 0.1% X0 per layer 
(equivalent of 100 µm of Si)

– Low power consumption (~50 W for 
1 Giga pixels) 

– High resolution thus small pixel size 
• Excellent point resolution (< 4 µm)
• Superb impact parameter resolution 

( 5µm ⊕ 10µm/(p sin3/2θ) )
– Good angular coverage; robust pattern 

recognition (track finding in vtx alone)
– Modest radiation tolerance for ILC applications
– EMI immunity

• Combination of small pixels, short integration time, 
low power required for ILC is difficult to achieve

– Small pixels tend to limit the amount of 
circuitry that can be integrated in a pixel

– Small pixels also mean that the power/pixel 
must be kept low

• The low occupancy/pixel/train (~0.5%) means that a sparse scan architecture would 
be appealing if:

– Signal/noise is high
– Enough electronics can be integrated on a pixel

969 
µs

969 
µs

~199 ms

ILC Beam structure:
Five trains of 2625 bunches/sec
Bunch separation of 369.2 ns
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Pixel Detector Mechanical Design
• Baseline vertex detector has a central, 5-layer barrel, two 4-plane end disk 

assemblies and three additional disks per end for extended coverage 
• All elements are supported indirectly from the beam tube via double-walled, 

carbon fiber laminate half-cylinder
• Barrel Region

– Five layers
– Longitidunal coverage: ± 62.5 mm
– Radial coverage: 14 < R < 61 mm

• Forward regions
– Four disks
– z = ± 72, ± 92, ± 123, ± 172 mm
– Radial coverage: R < 71 mm

side view                                    end view



TILC08, Sendai, March 3-6, 2008  -- M. Demarteau Slide 5

Mechanical Layout: V1 
• New layout compared to original baseline design

– Sensor counts increased in L3, L4, L5 to obtain multiples of 4 and fully 
identical barrel halves

• Goal of understanding how to optimize the geometry of the carbon fiber / 
epoxy composite frame to minimize deflection due to gravity and 
temperature changes. 

• Various configurations being studies 
– 4-layer (0,90,90,0 degree) lay-up 

• The maximum gravitational deflection vector is about 0.6 µm in each case.
– 3-layer CF structures 

• mass optimization and minimization 
of thermal deflections.

• Thermal distortions are a serious issue 
for sensors below ~ 10 0C
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Mechanical Layout: V2
• All Silicon layout: proposed to mitigate CTE issues

– Uses only the silicon sensors in “cylindrical” portions of the structure 
• Sensors glued to one another along edges by thin beads of epoxy and 

supported by thin, flat carbon fiber/epoxy end membranes

• 75 µm silicon thickness assumed
– Could be modified for 

thicker or thinner sensors

• Parametric FEA model for all 5 
layers of this detector (UW)

All silicon mechanical prototype
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• FEA study of gravitational sag and 
maximal displacements for a ∆T 
of 10 0C

• Note that the Z deflection is 
composed mainly of the simple 
change in length of the detector 
– Results independently 

verified by LCFI collaboration 

• Less temperature dependent than 
CF support structures 

Mechanical Layout: V2
• All silicon layout 

Model of Layer 1

Detail of glue joints 

0.7 mm

Layer Gravity 
(µm) ∆x (µm) ∆y (µm) ∆z (µm)

1 0.1 0.9 1.8 5.3
2 0.1 1.0 3.0 5.6
3 0.3 1.6 4.0 5.8
4 0.6 2.6 5.7 6.2
5 1.4 4.4 8.1 6.6
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Mechanical Layout: Forward Region
• Forward pixel detectors are notoriously difficult to build in low mass, low 

power configuration with very little additional mass due to cables 

• Currently thinking of silicon disks 
with support and readout at the 
periphery 

• Area not well studied; many open 
issues 
– Long barrels vs short barrels 
– Cable routing 
– Power delivery

R=6cm 
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Vertex Detector Sensor Technology 
• Collaborating with many specific sensor R&D groups and considering broad 

spectrum of technologies
• CCD’s

– Column Parallel (LCFI)
– ISIS (LCFI)
– Split Column (SLAC)

• CMOS Active Pixels
– Mimosa series (Ires)
– INFN
– LDRD 1-3 (LBNL)
– Chronopixel (Oregon/Yale)

• SOI
– American Semiconductor/FNAL
– OKI/KEK

• 3D
– VIP (FNAL)

• DEPFET (Munich)

DEPFET

LBL-LDRD3ISIS

CPC2

3D
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Vertex Detector Sensor Technology 
• So far no ‘ideal’ technology that performs best in all categories

– Attempts to reduce hit density via faster readout or time stamping seem 
to be invariably associated with more power

• Issues 
– The first layer carries a large weight in determining the ultimate impact 

parameter resolution and is in the most dense environment
• May compromise on power to get lowest hit density and best time stamping 

– Services and handling of Lorentz forces much more important for outer 
layers but should not compromise performance 

– End cap sensor issues are very different from barrel 
• Tracks nearly perpendicular; Lorentz forces 

less of an issue
• Considering the option of mixed technologies 

both for support and sensors
– e.g. Dzero Run IIb, CDF/Dzero Layer 0

• We need new, clever ideas ! Carbon Fiber 
support structures 

Independently 
supported “staves”

DØ IIb
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Tracking Detector
• Tracking detector requirements

– Transparency: 0.8% X0 per layer average over full fiducial volume 
– Superb point resolution and momentum resolution 

• Strip pitch of 25 µm
• σ(1/p) = 2 10-5 (GeV-1) at 90 degrees 

– Good angular coverage; robust pattern 
recognition

• Single bunch timing 
• Very high tracking efficiency for PFA 

– Robust against aging and beam accidents
– Modest radiation tolerance 

• Silicon technology chosen
– Mature technology which allows emphasis 

on phi resolution 
• Superior asymptotic pT resolution

– Allows for flexibility in minimizing material 
distribution through fiducial volume 
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Tracker Mechanical Design
• 5-Layer silicon strip outer tracker, covering Rin = 20 cm to Rout = 125 cm
• Barrel – Disk structure: goal is 0.8% X0 per layer 

• Support
– Double-walled CF cylinders
– Allows full azimuthal and 

longitudinal coverage

• Barrels
– Five barrels, measure Phi only
– 10 cm z segmentation 
– Barrel lengths increase with

radius

• Disks
– Four double-disks per end 
– Measure R and Phi
– varying R segmentation
– Disk radii increase with Z
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Sensor and Module Design 
• Hybrid-less design

– 93.5 x 93.5 mm2 sensor from 6”
wafer with 1840 (3679) readout 
(total) strips 

– Read out with two asics (kPix)
bump-bonded to sensor  

– Routing of signals through 2nd

metal layer, optimized for strip 
geometry 

• Minimize capacitance and balance with 
trace resistance for S/N goal of 25

– Power and clock signals also routed over the sensor
• Module support 

– Minimal frame to hold silicon flat and 
provide precision mounts

• CF-Rohacell-Torlon frame w/ ceramic mounts
• CF-Torlon clips glue to large-scale supports

– Ease of large scale production, assembly 
and installation/replacement

• Power pulsing for tracker allows for air cooling
– Factor of >80 in power reduction
– But have to deal with enormous Lorentz forces 
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Prototyping Status 
• Sensors ordered from Hamamatsu; due May ’08 
• 64-channel KPiX-V5/6 in hand 

– ADC noise too high 
– KPiX64-V7 submitted to resolve noise issue 

• Gold stud bump-bonding proceeding at UC Davis 
in collaboration with ECAL (sensors can also be
wirebonded) 

• Prototype pigtail cable design completed by 
Univ. New Mexico 
– ¼ oz. Cu on 50µm Kapton, 8mm width 
– 2 power+ground pairs, 8 control/ro lines
– HV pair for sensor bias

• Ongoing studies of thin sensors 
– Purdue group 200µm thin Si, S/N>18
– Fermilab thinned and laser annealed 

• Alternative readout of sensors 
– UCSC, long shaping time, TOT
– LPNHE/Paris, SiTR chip, 130 nm, 128 channels 

• Double-sided silicon options pursued by Korea 
• A lot of room for collaboration and additional studies 

SiTR
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Forward Tracker
• Barrel cylinders capped by CF-Rohacell

forward disks 
• Design rather conventional, analogous to 

designs for other detectors (LHC) 
• Close attention paid to one serious short-

coming of existing designs: material budget 
• Still many outstanding issues: 

– Tiling
– Readout segmentation 
– Applicability of double-sided silicon 
– Robustness of pattern recognition 
– Integration of very far forward disks 
– Services and cable plant
– Power pulsing and Lorentz forces 

• Needs input from simulation! 

• Plenty of room for contributions ! 

CMS

SiD
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Simulation Studies 
• Uniform coverage up to angles of 110

– Full coverage of 5 VXD hits and 
5 OT hits up to |cosθ|~0.98

• Thus, baseline geometry exists 

• Design now needs to be 
“benchmarked” and optimized 

• Ideally, the design optimization is 
an iterative process: 
– Start from a baseline design and 

understand its performance 
– Perform variations on the baseline 

to establish “performance 
derivatives”

– Establish new baseline design 
with improved performance

– Repeat until you achieve 
convergence
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Tracking Toolkit 
• Tools required: 

Visualization

Application 
control

Track Finding

Simulation

Digitization

Track Fitting

Performance analysis

P

P

P

P

Track Finding Track Finder 1

Track Finder 2

Track Finder 3

?

?

Track Merging

Application 
control

Application 
control

Geometry

from: D. Onoprienko



TILC08, Sendai, March 3-6, 2008  -- M. Demarteau Slide 18

Tracking Toolkit Inventory
• Detector modeling 

– Complete barrel and disk geometry available
• Poly-hydra geometry definition
• Virtual segmentation 

– Output is a “hit”
• Digitization 

– Complete simulation of charge deposition in 
vertex pixels (ccd) and strips available

– Output is clustering of hits to form “tracker hits”
• Ghosting still an issue 

• Track finding algorithms
– Vertex seeded tracking (complete) 
– Conformal mapping algorithm (complete) 
– Stand alone outer tracking (in progress) 
– Calorimeter seeded tracking (complete) 

• Track fitting algorithms
– Weight matrix
– Kalman filter 
– Fast helix finder for track finding
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Optimization Process
• Generally two metrics used: 

– Traditional metric: efficiency, coverage, resolution, fake rate, …
– Physics metric: benchmark processes, integrated detector performance

(PFA); receives non-uniform weight 

• Caveat Emptor: this only works if 
– Your performance metrics are relevant to the ILC physics program

• Danger #1 – optimize for an irrelevant physics benchmark
• Danger #2 – fail to optimize for the actual requirements needed at the ILC

– Your simulation tools are sensitive to the design variations that will 
ultimately improve performance

• Danger #3 – the simulation tools, not the detector design, limit the measured 
performance

• Danger #4 – the level of simulation modeling is too coarse and misses 
important effects

– Your backgrounds and hardware performance requirements are realistic
• Danger #5 – backgrounds will be worse than expected
• Danger #6 – hardware problems will not allow simulated performance to be 

achieved
• Important to retain / demonstrate “performance contingency” From: R. Partridge
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Performance 
• Vertex detector seeded pattern recognition (3 hit combinations)

– ttbar-events, full detector simulation and digitization, √s = 500 GeV, 
background included

• Efficiency and purity for prompt tracks is good 
– Fake rate <1%; all forward and at low pT

• Momentum resolution for central region only
• Tracks with pT < 200 MeV difficult in presence of backgrounds

)(GeVpT

Efficiency
Black: VXD based
Red: VXD + tracker)

(
1

2
−

G
eV

pp T

T
δ

)(GeVpT

central only

98%

pT (GeV)
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rz

Performance
• Vertex Seeded Tracking

– Pick three hits in vertex detector and fit 
helix, pick up hits in outer tracker

• Impact parameter
– Resolution in rφ (rz) plane asymptotically 

approaches ~ 2µm (4µm) in the limit of 
high pT

• Tracking in dense environment
– qqbar events at √s = 500 GeV
– Central region only, realistic ccd simulation

• Angle with respect to Thrust axis, α

r-φ

ccd + Gaussian
smearing
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Performance Seedtracker
• Seed Tracker Algorithm: 

– Form track seed candidate by picking 3 hits from the seed layers and fit 
seed candidate to determine helix

– Confirm seed candidate by looking for hits in confirm layers
– Extend seed candidate by looking for hits in extend layers
– Eliminate duplicates

• Example for Z qqbar at √s = 500 GeV, Layers 3,4,5 seed layers

MC Tracks
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Calorimeter Assisted Tracking
• With a fine grained calorimeter, can do tracking with the calorimeter 

– Find MIP stubs in the calorimeter, extrapolate them into tracker, picking 
up hits to capture events that tracker pattern recognition doesn’t find

– Can be used to reconstruct long-lived particles: K0
s and Λ or V’s in general

– In a sample of simulated Z-pole events: reconstruct ~61% of all charged 
pions with transverse momentum above 1 GeV, produced by K0

s 
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Help ! 
• Not all tools in hand yet, notably full track fitting 

• Performance characterization not started within fully consistent platform 
– Single particle response
– Physics processes

• Optimization process not really started 
– Number of layers 
– Long barrels versus short barrels 
– Endcap layout and tiling 
– Segmentation and need for double-sided sensors 

• Benchmarking studies 
– Pick your plot
– e.g. efficiency versus purity for b-jets, c-jets, light quarks 
– Higgs branching ratios
– …
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Summary
• More work than people to do the work 
• Characterizing the performance of the design in the traditional metric has 

just started; physics metric barely touched, let alone optimization of design
• The problems are challenging and some are rather generic 

– Applicability beyond the ILC 
– Technology issues that apply to other projects 

• SiD welcomes new participation in all areas, but especially in the area of 
benchmarking and simulation ! 


