The SiD Detector Concept

Opportunities in Vertexing and Tracking

Marcel Demarteau

For the SiD Tracking and Vertexing Group

TILCO8 Sendai, March 3-6, 2008

Current Participants

J. Albert³, F. Blanc¹¹, M. Breidenbach⁹, W. Cooper⁴, C. Damerell⁸, C. Deaconu⁹, M. Demarteau⁴, J.F. Genat⁶, N. Graf⁹, J. Goldstein⁸, S. Hillert⁷, M. Hoeferkamp¹², J. Jaros⁹, T. Johnson⁹, R. Kutschke⁴, K. Krempetz⁴, R. Lipton⁴, T. Markiewicz⁹, T. Maruyama⁹, J. McCormick⁹, C. Meyer¹⁰, C. Milstene⁴, T. Nelson⁹, A. Nomerotski⁷, D. Onoprienko⁵, R. Partridge², T. Rice¹⁰, A. Savoy-Navarro⁶, B. Schumm¹⁰, S. Seidel¹², N. Sinev¹³, K. Stefanov⁸, D. Su⁹, E. von Toerne⁵, S. Wagner¹¹, H. Wenzel⁴, S. Worm⁸, H. Weerts¹

- 1. Argonne
- 2. Brown University
- 3. Caltech
- 4. Fermilab
- 5. Kansas State University
- 6. LPNHE Université de Paris 6/IN2P3-CNRS
- 7. Oxford University
- 8. Rutherford Appleton Laboratory
- 9. SLAC
- 10. UCSC
- 11. University of Colorado
- 12. University of New Mexico
- 13. University of Oregon

apologies to those we forgot

Pixel Detector

- Pixel detector requirements
 - Transparency: 0.1% X₀ per layer (equivalent of 100 μm of Si)
 - Low power consumption (~50 W for 1 Giga pixels)
 - High resolution thus small pixel size
 - Excellent point resolution (< 4 μm)
 - Superb impact parameter resolution (5μm ⊕ 10μm/(p sin^{3/2}θ))
 - Good angular coverage; robust pattern recognition (track finding in vtx alone)
 - Modest radiation tolerance for ILC applications
 - EMI immunity
- Combination of small pixels, short integration time, low power required for ILC is difficult to achieve
 - Small pixels tend to limit the amount of circuitry that can be integrated in a pixel
 - Small pixels also mean that the power/pixel must be kept low

ILC Beam structure: Five trains of 2625 bunches/sec Bunch separation of 369.2 ns

- The low occupancy/pixel/train (~0.5%) means that a sparse scan architecture would be appealing if:
 - Signal/noise is high
 - Enough electronics can be integrated on a pixel

Pixel Detector Mechanical Design

- Baseline vertex detector has a central, 5-layer barrel, two 4-plane end disk assemblies and three additional disks per end for extended coverage
- All elements are supported indirectly from the beam tube via double-walled, carbon fiber laminate half-cylinder
- Barrel Region
 - Five layers
 - Longitidunal coverage: ± 62.5 mm
 - Radial coverage: 14 < R < 61 mm
- Forward regions
 - Four disks
 - $-z = \pm 72, \pm 92, \pm 123, \pm 172 \text{ mm}$
 - Radial coverage: R < 71 mm

Mechanical Layout: V1

- New layout compared to original baseline design
 - Sensor counts increased in L3, L4, L5 to obtain multiples of 4 and fully identical barrel halves
- Goal of understanding how to optimize the geometry of the carbon fiber / epoxy composite frame to minimize deflection due to gravity and temperature changes.
- Various configurations being studies
 - 4-layer (0,90,90,0 degree) lay-up
 - The maximum gravitational deflection vector is about 0.6 µm in each case.
 - 3-layer CF structures

 mass optimization and minimization of thermal deflections.

Thermal distortions are a serious issue for sensors below ~ 10 °C

Mechanical Layout: V2

- All Silicon layout: proposed to mitigate CTE issues
 - Uses only the silicon sensors in "cylindrical" portions of the structure
- Sensors glued to one another along edges by thin beads of epoxy and supported by thin, flat carbon fiber/epoxy end membranes

- 75 µm silicon thickness assumed
 - Could be modified for thicker or thinner sensors
- Parametric FEA model for all 5 layers of this detector (UW)

Mechanical Layout: V2

All silicon layout

0.7 mm

FEA study of gravitational sag and maximal displacements for a ∆T of 10 °C

Layer	Gravity (μm)	Δx (μm)	Δy (μm)	Δz (μm)
1	0.1	0.9	1.8	5.3
2	0.1	1.0	3.0	5.6
3	0.3	1.6	4.0	5.8
4	0.6	2.6	5.7	6.2
5	1.4	4.4	8.1	6.6

- Note that the Z deflection is composed mainly of the simple change in length of the detector
 - Results independently verified by LCFI collaboration
- Less temperature dependent than CF support structures

Mechanical Layout: Forward Region SiD

- Forward pixel detectors are notoriously difficult to build in low mass, low power configuration with very little additional mass due to cables
- **Currently thinking of silicon disks** with support and readout at the periphery
- Area not well studied; many open issues
 - **Long barrels vs short barrels**
 - Cable routing
 - Power delivery

Vertex Detector Sensor Technology

 Collaborating with many specific sensor R&D groups and considering broad spectrum of technologies

- CCD's
 - Column Parallel (LCFI)
 - ISIS (LCFI)
 - Split Column (SLAC)
- CMOS Active Pixels
 - Mimosa series (Ires)
 - INFN
 - LDRD 1-3 (LBNL)
 - Chronopixel (Oregon/Yale)

- SOI
 - American Semiconductor/FNAL
 - OKI/KEK
- 3D
 - VIP (FNAL)
- DEPFET (Munich)

Vertex Detector Sensor Technology

DØ IIb

- So far no 'ideal' technology that performs best in all categories
 - Attempts to reduce hit density via faster readout or time stamping seem to be invariably associated with more power
- Issues
 - The first layer carries a large weight in determining the ultimate impact parameter resolution and is in the most dense environment
 - May compromise on power to get lowest hit density and best time stamping
 - Services and handling of Lorentz forces much more important for outer layers but should not compromise performance

End cap sensor issues are very different from barrel

 Tracks nearly perpendicular; Lorentz forces less of an issue

Considering the option of mixed technologies both for support and sensors

e.g. Dzero Run IIb, CDF/Dzero Layer 0

We need new, clever ideas!

Tracking Detector

- Tracking detector requirements
 - Transparency: $0.8\% X_0$ per layer average over full fiducial volume
 - Superb point resolution and momentum resolution
 - Strip pitch of 25 μm
 - $\sigma(1/p) = 2 \cdot 10^{-5} \text{ (GeV}^{-1})$ at 90 degrees
 - Good angular coverage; robust pattern recognition
 - Single bunch timing
 - Very high tracking efficiency for PFA
 - Robust against aging and beam accidents
 - Modest radiation tolerance
- Silicon technology chosen
 - Mature technology which allows emphasis on phi resolution
 - Superior asymptotic p_T resolution
 - Allows for flexibility in minimizing material distribution through fiducial volume

Tracker Mechanical Design

- 5-Layer silicon strip outer tracker, covering R_{in} = 20 cm to R_{out} = 125 cm
- Barrel Disk structure: goal is 0.8% X₀ per layer

Support

- Double-walled CF cylinders
- Allows full azimuthal and longitudinal coverage

Barrels

- Five barrels, measure Phi only
- 10 cm z segmentation
- Barrel lengths increase with radius

Disks

- Four double-disks per end
- Measure R and Phi
- varying R segmentation
- Disk radii increase with Z

Sensor and Module Design

- Hybrid-less design
 - 93.5 x 93.5 mm² sensor from 6" wafer with 1840 (3679) readout (total) strips
 - Read out with two asics (kPix) bump-bonded to sensor
 - Routing of signals through 2nd metal layer, optimized for strip geometry
 - Minimize capacitance and balance trace resistance for S/N goal of 25

- Power and clock signals also routed over the sensor
- Module support
 - Minimal frame to hold silicon flat and provide precision mounts
 - CF-Rohacell-Torlon frame w/ ceramic mounts
 - CF-Torlon clips glue to large-scale supports
 - Ease of large scale production, assembly and installation/replacement
- Power pulsing for tracker allows for air cooling
 - Factor of >80 in power reduction
 - But have to deal with enormous Lorentz forces

Prototyping Status

- Sensors ordered from Hamamatsu; due May '08
- 64-channel KPiX-V5/6 in hand
 - ADC noise too high
 - KPiX64-V7 submitted to resolve noise issue
- Gold stud bump-bonding proceeding at UC Davis in collaboration with ECAL (sensors can also be wirebonded)
- Prototype pigtail cable design completed by Univ. New Mexico
 - ¼ oz. Cu on 50μm Kapton, 8mm width
 - 2 power+ground pairs, 8 control/ro lines
 - HV pair for sensor bias
- Ongoing studies of thin sensors
 - Purdue group 200μm thin Si, S/N>18
 - Fermilab thinned and laser annealed
- Alternative readout of sensors
 - UCSC, long shaping time, TOT
 - LPNHE/Paris, SiTR chip, 130 nm, 128 channels
- Double-sided silicon options pursued by Korea
- A lot of room for collaboration and additional studies

Forward Tracker

- Barrel cylinders capped by CF-Rohacell forward disks
- Design rather conventional, analogous to designs for other detectors (LHC)
- Close attention paid to one serious shortcoming of existing designs: material budget
- Still many outstanding issues:
 - Tiling
 - Readout segmentation
 - Applicability of double-sided silicon
 - Robustness of pattern recognition
 - Integration of very far forward disks
 - Services and cable plant
 - Power pulsing and Lorentz forces
- Needs input from simulation!
- Plenty of room for contributions!

Simulation Studies

- Uniform coverage up to angles of 11⁰
 - Full coverage of 5 VXD hits and 5 OT hits up to |cosθ|~0.98
- Thus, baseline geometry exists
- Design now needs to be "benchmarked" and optimized
- Ideally, the design optimization is an iterative process:
 - Start from a baseline design and understand its performance
 - Perform variations on the baseline to establish "performance derivatives"
 - Establish new baseline design with improved performance
 - Repeat until you achieve convergence

Tracking Toolkit

Tools required:

from: D. Onoprienko

Tracking Toolkit Inventory

- Detector modeling
 - Complete barrel and disk geometry available
 - Poly-hydra geometry definition
 - Virtual segmentation
 - Output is a "hit"
- Digitization
 - Complete simulation of charge deposition in vertex pixels (ccd) and strips available
 - Output is clustering of hits to form "tracker hits"
 - Ghosting still an issue
- Track finding algorithms
 - Vertex seeded tracking (complete)
 - Conformal mapping algorithm (complete)
 - Stand alone outer tracking (in progress)
 - Calorimeter seeded tracking (complete)
- Track fitting algorithms
 - Weight matrix
 - Kalman filter
 - Fast helix finder for track finding

Optimization Process

- Generally two metrics used:
 - Traditional metric: efficiency, coverage, resolution, fake rate, ...
 - Physics metric: benchmark processes, integrated detector performance (PFA); receives non-uniform weight
- Caveat Emptor: this only works if
 - Your performance metrics are relevant to the ILC physics program
 - Danger #1 optimize for an irrelevant physics benchmark
 - Danger #2 fail to optimize for the actual requirements needed at the ILC
 - Your simulation tools are sensitive to the design variations that will ultimately improve performance
 - Danger #3 the simulation tools, not the detector design, limit the measured performance
 - Danger #4 the level of simulation modeling is too coarse and misses important effects
 - Your backgrounds and hardware performance requirements are realistic
 - Danger #5 backgrounds will be worse than expected
 - Danger #6 hardware problems will not allow simulated performance to be achieved
- Important to retain / demonstrate "performance contingency"

From: R. Partridge

Performance

- Vertex detector seeded pattern recognition (3 hit combinations)
 - ttbar-events, full detector simulation and digitization, √s = 500 GeV,
 background included
 - Efficiency and purity for prompt tracks is good
 - Fake rate <1%; all forward and at low p_T
 - Momentum resolution for central region only
 - Tracks with p_T < 200 MeV difficult in presence of backgrounds

Performance

- Vertex Seeded Tracking
 - Pick three hits in vertex detector and fit helix, pick up hits in outer tracker
- Impact parameter
 - Resolution in $r\phi$ (rz) plane asymptotically approaches $\sim 2\mu m$ (4 μm) in the limit of high p_T
- Tracking in dense environment
 - qqbar events at \sqrt{s} = 500 GeV
 - Central region only, realistic ccd simulation
 - Angle with respect to Thrust axis, $\boldsymbol{\alpha}$

Performance Seedtracker

- Seed Tracker Algorithm:
 - Form track seed candidate by picking 3 hits from the seed layers and fit seed candidate to determine helix
 - Confirm seed candidate by looking for hits in confirm layers
 - Extend seed candidate by looking for hits in extend layers
 - Eliminate duplicates
- Example for $Z \rightarrow qqbar$ at $\sqrt{s} = 500$ GeV, Layers 3,4,5 seed layers

Calorimeter Assisted Tracking

- With a fine grained calorimeter, can do tracking with the calorimeter
 - Find MIP stubs in the calorimeter, extrapolate them into tracker, picking up hits to capture events that tracker pattern recognition doesn't find
 - Can be used to reconstruct long-lived particles: K_s^0 and Λ or V's in general
 - In a sample of simulated Z-pole events: reconstruct $\sim\!61\%$ of all charged pions with transverse momentum above 1_GeV, produced by $\rm K^0_s$

Help!

- Not all tools in hand yet, notably full track fitting
- Performance characterization not started within fully consistent platform
 - Single particle response
 - Physics processes
- Optimization process not really started
 - Number of layers
 - Long barrels versus short barrels
 - Endcap layout and tiling
 - Segmentation and need for double-sided sensors
- Benchmarking studies
 - Pick your plot
 - e.g. efficiency versus purity for b-jets, c-jets, light quarks
 - Higgs branching ratios
 - ...

Summary

- More work than people to do the work
- Characterizing the performance of the design in the traditional metric has just started; physics metric barely touched, let alone optimization of design
- The problems are challenging and some are rather generic
 - Applicability beyond the ILC
 - Technology issues that apply to other projects
- SiD welcomes new participation in all areas, but especially in the area of benchmarking and simulation!

