

Goals

- Study the physics performance of the silicon detector, particularly the benchmark channels
- Optimize the detector design quantitatively
- Make informed, rational technology choices
- To do these with confidence, we need:
 - Highly efficient, excellent resolution tracking
 - A robust, high-performance PFA
 - Physics analyses

Benchmarking Processes

- Compulsory and additional processes will allow to benchmark subsystems
 - Vertexing
 - Tracking
 - EM and HAD Calorimetry
 - Muon system
 - Forward system
- and to compare SiD to other concepts

Benchmarking Plans, Andrei Nomerotski, 30 Jan 2008

1. $e^+e^- \to Zh, \to \ell^+\ell^- X, l = e, \mu; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$

SLAC

2. $e^+e^- \rightarrow Zh$, $Z \rightarrow q\bar{q}$, $\nu\bar{\nu}$; $h \rightarrow c\bar{c}$, $\mu^+\mu^-$; $m_h = 120$ GeV at $\sqrt{s} = 0.25$ TeV

Michigan/Bristol?

3. $c^+c^- \rightarrow \tau^+\tau^-$, at $\sqrt{s}=0.5 \text{ TeV}$

Texas A&M?

4. $e^+e^- \rightarrow t\bar{t}$ at \sqrt{s} -0.5 TeV

RAL/Oxford

5. $e^+e^- \to \tilde{\chi}_1^- \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0 \to W^+W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 / ZZ\tilde{\chi}_1^0 \tilde{\chi}_1^0$ at \sqrt{s} =0.5 TeV

SLAC

6. $e^+e^- \rightarrow c\bar{c}, b\bar{b}, \text{ at } \sqrt{s}=0.5 \text{ TeV};$

Oxford

7. $e^+e^- \to Zhh$, $m_h = 120 \text{ GeV at } \sqrt{s} = 0.5 \text{ TeV}$;

Oxford

8. $e^+e^- \rightarrow \tilde{\tau}_1\tilde{\tau}_1$, at Point 3 at \sqrt{s} =0.5 TeV;

Texas A&M/Colorado ? /Montenegro

9. $e^+e^- \to \tilde{t}_1\tilde{t}_1^* \to c\bar{c}\tilde{\chi}_1^0\tilde{\chi}_1^0$, $m_{\tilde{t}_1} = 120$ GeV, $m_{\tilde{\chi}_1^0} = 100$ GeV, at \sqrt{s} =0.5 TeV

Lancaster

10. $e^+e^- \rightarrow \tilde{b}_1\tilde{b}_1^* \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$, at $\sqrt{s}{=}0.5~{\rm TeV}$

Oxford/Montenegro

11. $e^+e^- \to \mu^+\mu^-$, at \sqrt{s} =0.5 TeV

SLAC

12. H $\rightarrow \gamma \gamma$

RAL

Tools for Benchmarking

Java based Icsim.org framework

- Icsim.org FastMC
 - Smeared MC information
- Icsim.org full MC: SLIC
 - GEANT based
- Perfect PFA
- Vertexing / Flavour tagging : LCFI package
- Track reconstruction and Full PFA
 - Many pieces in place, need to be brought together into production reconstruction, optimized, and applied to subdetector optimization.

Analysis Model

- Use FastMC to develop analysis algorithms
- Use full MC and Perfect PFA as intermediate step to develop a realistic analysis
- Use realistic tracking and full PFA for the analysis when ready
 - A drop-in replacement of algorithms

What does Perfect PFA do?

Tracking

- Define "trackable" charged particles
- Smear as in FastMC
- Full material effects (interactions and decays) before the calorimeter are taken into account in deciding which particles are actually tracked

Neutrals

- For all "non-trackable" particles, assign energy deposits in the calorimeters
- Do neutral particle reconstruction using those deposits using perfect pattern recognition (no confusion term)
- Use actual detector responses for energy and direction so most of the nasty nonlinear, nongaussian effects are included

List of existing SiD full PFAs

- Steve Magill: Track following + E/p clustering
- Mat Charles: NonTrivialPFA & ReclusterDTree

- Lei Xia: Density-based clustering.
- NIU/NICADD group: Directed tree clustering

Interaction with other frameworks

- Can also study silicon detector variants using other simulation and reconstruction frameworks.
- Use Mokka to simulate a "SiD-ish" detector, analyze using PandoraPFA.
- See talk by Marcel Stanitzki in the sim/reco session.

Processes for PFA Development

e+e- -> ZZ -> qq + vv @ 500 GeV Development of PFAs on ~120 GeV jets – most common ILC jets Unambiguous dijet mass allows PFA performance to be evaluated w/o jet combination confusion PFA performance at constant mass, different jet E (compare to ZPole) 2 jets dE/E, $d\theta/\theta$ -> dM/M characterization with jet E

e+e--> ZZ -> qqqq @ 500 GeV 4 jets - same jet E, but filling more of detector **4 jets** Same PFA performance as above? Use for detector parameter evaluations (B-field, IR, granularity, etc.)

6 jets

e+e- -> tt @ 500 GeV Lower E jets, but 6 – fuller detector

e+e- -> qq @ 500 GeV

250 GeV jets - challenge for PFA, not physics

Detector Variants & Event Samples

- A number of variants of the silicon detector have been implemented, varying:
 - ECal inner radius
 - HCal absorber (Fe, W, Cu, Pb), readout (Scint, RPC)
 - BField (5, 4, 3T)
- Response to the canonical event samples has been simulated
- Detector optimization studies could commence immediately.

How to contribute?

- Join the track reconstruction effort.
 - The forward region in particular.
- Join the particle flow effort
 - Templated analysis framework means you can work on individual aspects of the reconstruction
 - muons
 - photons
 - charged hadron shower/track association
 - neutral hadron shower identification
- Join the benchmarking effort
 - Fast MC, and PerfectPFA allow analyses to be developed now, with seamless inclusion of full reconstruction results when they become available.