CF4 GasTest for GEM-TPC

Sokendai(KEK) Ryo YONAMINE
~OUTLINE~
I. PURPOSE
2. THIS WORK
3. RESULTS
4. SUMMARY
5. PLANS

Collaboration with
KEK, TUAT, KogakuinU
KinkiU, SagaU
MPI, Saclay, TsinghuaU

I.PURPOSE

WHY NEED GAS TEST ?

The chamber gas plays important roles in order to measure the position of tracks.

The gas decide three parameters.
I. velocity of drifting electrons
2. diffusion constant of drifting electrons (C_{D})
3. the effective number of seed electrons $\left(\mathrm{N}_{\text {eff }}\right)$

PURPOSE OF OUR STUDY

According to GARFIELD,
CF_{4} gas mixtures are likely to give low C_{D}. But, ...
problem
CF_{4} gas mixtures are not yet fully studied as GEM-TPC gas.

Our task is to confirm whether these gases can become GEM-TPC gas.

2.THISWORK

THIS WORK
 ~cosmic ray test~

We tested $\mathrm{Ar}^{-} \mathrm{CF}_{4}$-isoC4 $\mathrm{H}_{10}(94: 3: 3)$ with GEM-TPC as a first step, (Source was cosmic ray) and estimated $\mathbf{V}_{\text {drift }}, \mathbf{C}_{\mathrm{D}}$ (transverse) and $\mathbf{N}_{\text {eff }}$.

And we compared our measurement with GARFIELD in $V_{\text {drift }}$ and C_{D}.

PROBLEMS IN
 DATA ANALYSIS

This is one of the histograms which shows

drift distance Z-distribution of "seed electrons". We estimated $\mathrm{V}_{\text {drift }}$ from this. (Drift distance shoud be TPC length.)

Here, there are two problems.
I. What's the gap at left side ?
2. What's the value of the end point?
(right side)

OUR ACTION FOR THE PROBLEMS I

Where's the right side end ?

The right edge is slightly-tilted.
So we define the end point as follows.
I. fit the edge as $y=$
a_{0}
(Red Line)
$\exp \left[\frac{x-a_{1}}{a_{2}}\right]$
2. let the end point $=a_{1} \pm 2 a_{2}$
(Blue Region)

OUR ACTION FOR
 THE PROBLAMS 2

- What's the gap at left side ?

500ns_delay

We tested with delayed trigger gate.
Histograms were expected to move to the left because of the trigger delay.

Result (left figure)
-Right edge moved reasonably.

- No change was seen with Left edge.

From this result, we take the left gap as something like "invisible region".

NEW PROBLEM ~To calibration by PIO~

Where is T_{0} ?
We calibrated T_{0} by using PI0 gas.

"invisible region"

	our measurement	Garfield		
C_{D}	$\\| 3 \pm 4.8$	$\\| 6.7$		
$V_{\text {drifit }}$	$?$	5.37		

ASSUMPTION

Pl0 gas give also some consistency in $\mathrm{V}_{\text {drift. }}$.
$\mathrm{V}_{\text {drift }}(\mathrm{PIO} @ \mathrm{E}=108.5[\mathrm{~V} / \mathrm{cm}])=5.37 \pm 0.30$
We estimate T_{0} by analysis for PIO.

P10

PIO.

Fig. 4. Calibration in P10.

NEW PROBLEM ~To calibration by PIO~

Where is T_{0} ?
We calibrated T_{0} by using PI0 gas.

"invisible region"

	our measurement	Garfield		
C_{D}	$\\| 3 \pm 4.8$	$\\| 6.7$		
$V_{\text {drifit }}$	$?$	5.37		

ASSUMPTION

Pl0 gas give also some consistency in $\mathrm{V}_{\text {drift. }}$.
$\mathrm{V}_{\text {drift }}(\mathrm{PIO} @ \mathrm{E}=108.5[\mathrm{~V} / \mathrm{cm}])=5.37 \pm 0.30$
We estimate T_{0} by analysis for PIO.

SUMMARY OF OUR ACTION

FOR THE PROBLEMS ~analysis procedure~

I. Obtain the value of end point($\left.Z_{\text {end }}\right)$ by fitting the right edge.
2. Obtain Z-offset
by using T_{0} from PIO test.
3. Obtain drift-length(Lmeasure) from I, 2.
4. Calibrate $V_{\text {drift }}$ to make consistency in $L_{\text {measure }}$ and $L_{\text {true. }}$

$$
\left(\mathrm{L}_{\text {true }}=254 \mathrm{~mm}\right)
$$

As a result, $\mathrm{V}_{\text {drift }}$ includes error originated from

SUMMARY OF OUR ACTION

 FOR THE PROBLEMS ~analysis procedure~
I. Obtain the value of end point $\left(Z_{\text {end }}\right)$ by fitting the right edge.
2. Obtain Z-offset
by using T_{0} from PIO test.
3. Obtain drift-length($L_{\text {measure }}$) from I, 2.
4. Calibrate $\mathrm{V}_{\text {drift }}$ to make consistency in $\mathrm{L}_{\text {measure }}$ and $\mathrm{L}_{\text {true }}$.

$$
\left(\mathrm{L}_{\text {true }}=254 \mathrm{~mm}\right)
$$

As a result, $\mathrm{V}_{\text {drift }}$ includes error originated from

SUMMARY OF OUR ACTION

 FOR THE PROBLEMS ~analysis procedure~
I. Obtain the value of end point $\left(Z_{\text {end }}\right)$ by fitting the right edge.
2. Obtain Z-offset
by using To from PIO test.
3. Obtain drift-length($\left.L_{\text {measure }}\right)$ from I, 2.
4. Calibrate $\mathrm{V}_{\text {drift }}$ to make consistency in $\mathrm{L}_{\text {measure }}$ and $\mathrm{L}_{\text {true. }}$

$$
\left(L_{\text {true }}=254 \mathrm{~mm}\right)
$$

As a result, $\mathrm{V}_{\text {drift }}$ includes error originated from

SUMMARY OF OUR ACTION

 FOR THE PROBLEMS ~analysis procedure~
I. Obtain the value of end point $\left(Z_{\text {end }}\right)$ by fitting the right edge.
2. Obtain Z-offset
by using To from PIO test.
3. Obtain drift-length(Lmeasure) from I, 2.
4. Calibrate $\mathrm{V}_{\text {drift }}$ to make consistency in $\mathrm{L}_{\text {measure }}$ and $\mathrm{L}_{\text {true. }}$

$$
\left(L_{\text {true }}=254 \mathrm{~mm}\right)
$$

As a result, $\mathrm{V}_{\text {drift }}$ includes error originated from

SUMMARY OF OUR ACTION

 FOR THE PROBLEMS ~analysis procedure~
I. Obtain the value of end point $\left(Z_{\text {end }}\right)$ by fitting the right edge.
2. Obtain Z-offset by using T_{0} from PIO test.
3. Obtain drift-length(Lmeasure) from I, 2.
4. Calibrate $\mathrm{V}_{\text {drift }}$ to make consistency in $\mathrm{L}_{\text {measure }}$ and $\mathrm{L}_{\text {true. }}$

$$
\left(L_{\text {true }}=254 \mathrm{~mm}\right)
$$

As a result, $V_{\text {drift }}$ includes error originated from

SUMMARY OF OUR ACTION

FOR THE PROBLEMS ~analysis procedure~

I. Obtain the value of end point($\left.Z_{\text {end }}\right)$ by fitting the right edge.
2. Obtain Z-offset
by using T_{0} from PIO test.
3. Obtain drift-length(Lmeasure) from I, 2.
4. Calibrate $V_{\text {drift }}$ to make consistency in $L_{\text {measure }}$ and $L_{\text {true. }}$

$$
\left(\mathrm{L}_{\text {true }}=254 \mathrm{~mm}\right)
$$

As a result, $\mathrm{V}_{\text {drift }}$ includes error originated from

3.RESULTS

Ar-CF4-iso C4HIO(94:3:3) TEST

We tested the following condition.
$\mathrm{E}=80,100,120,135,150[\mathrm{~V} / \mathrm{cm}] \quad \mathrm{B}=1[\mathrm{~T}]$

RESULTS

$E[V / c m]$	$N_{\text {eff }}$	\# of tracks
80	23 ± 6	$\sim 21,000$
100	21 ± 8	$\sim 18,000$
120	25 ± 9	$\sim 17,000$
135	24 ± 9	$\sim 16,000$
150	21 ± 2	$\sim 64,000$

No Problem with Electron Attachment

COMPARISON TO GARFIELD
 \simeq DriftVelocity $\sim\left(\right.$ Ar-CF $_{4}$-isoC $\mathrm{C}_{4} \mathrm{H}_{10}(94: 3: 3)$

COMPARISON TO GARFIELD

4.SUMMARY

SUMMARY

We tested Ar-CF4-isoC4HIO(94:3:3) as GEM-TPC gas, (cosmic-ray test, $\mathrm{E}=80,100,120,135,150[\mathrm{~V} / \mathrm{cm}], \mathrm{B}=1[\mathrm{~T}]$)
and
compared with GARFIELD.

CONCLUSIONS

We can confirm Ar-CF4-isoC4 $_{4} \mathrm{H}_{10}$ (94:3:3) work as GEM-TPC gas
@E=80~150[V/cm]
($N_{\text {eff }}$ seems to be O.K.)
Discrepancy can be seen between our results and garfield. (especially at high electric field)

5.PLANS

PLANS

Bito-san(TUAT) is going to measure $\mathrm{V}_{\text {drift }}$ in our condition independently. So, we'd like to compare the results to ours.

- Test with other E,B field , same gas

$$
\begin{aligned}
& \mathrm{E}=50,180, \ldots[\mathrm{~V} / \mathrm{cm}] \\
& \mathrm{B}=0[\mathrm{~T}]
\end{aligned}
$$

- Test with other gases

$$
\begin{aligned}
& \text { Ar-CF4-isoC4HIO(95:3:2) } \\
& \text { Ar-CF4-isoC4HIO(96:3:I) }
\end{aligned}
$$

Study about advantage of
CF4 gas mixtures

CHECK H.V. SUPPLIER

Chamber Sketch

DIFINITION

$I_{\text {measure }}$: indicated current value Icaluculate : caluculated from voltage

$$
V_{p a d}=0
$$

1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5

