CF4 GasTest for GEM-TPC

Sokendai(KEK) Ryo YONAMINE

 \sim OUTLINE \sim

PURPOSE
THIS WORK
RESULTS
SUMMARY
PLANS

Collaboration with KEK,TUAT, KogakuinU KinkiU, SagaU MPI, Saclay, TsinghuaU

WHY NEED GAS TEST ?

The chamber gas plays important roles in order to measure the position of tracks.

The gas decide three parameters.

I. velocity of drifting electrons (V_{drift}) 2. diffusion constant of drifting electrons (C_D) 3. the effective number of seed electrons (N_{eff})

PURPOSE OF OUR STUDY

According to GARFIELD, CF_4 gas mixtures are likely to give low C_D . But, ...

(problem)

CF₄ gas mixtures are not yet fully studied as GEM-TPC gas.

Our task is to confirm whether these gases can become GEM-TPC gas.

2.THIS WORK

We tested Ar-CF₄-isoC₄H₁₀(94:3:3) with GEM-TPC as a first step, (Source was cosmic ray) and estimated V_{drift}, C_D(transverse) and N_{eff}.

And we compared our measurement with GARFIELD in V_{drift} and $C_{D.}$

<u>PROBLEMS IN</u> DATA ANALYSIS

This is one of the histograms which shows Z-distribution of "seed electrons". We estimated V_{drift} from this. (Drift distance shoud be TPC length.)

Here, there are two problems.

I. What's the gap at left side ?2. What's the value of the end point ? (right side)

OUR ACTION FOR THE PROBLEMS I

66.86

Integral 2.51e+04

Mean RMS

Z dist of Hit point (Row 12)

of events

Where's the right side end ?

The right edge is slightly-tilted. So we define the end point as follows.

- I. fit the edge as \mathcal{Y} (Red Line)
- $\frac{a_0}{exp[\frac{x-a_1}{a_2}]}$
- 2. let the end point $= a_1 \pm 2a_2$ (Blue Region)

OUR ACTION FOR THE PROBLEMS 2

What's the gap at left side ?

500ns_delay

of ev

We tested with delayed trigger gate. Histograms were expected to move to the left because of the trigger delay.

Result (left figure)

•Right edge moved reasonably.

•No change was seen with Left edge.

From this result, we take the left gap as something like "invisible region".

correspond to 500ns

NEW PROBLEM $\sim T_0$ calibration by PI0 \sim

Where is T_0 ?

We calibrated T_0 by using PI0 gas.

"invisible region"

	our measurement	Garfield
CD	113±4.8	116.7
V_{drift}	?	5.37

ASSUMPTION

PIO gas give also some consistency in V_{drift}. V_{drift}(PIO@E=108.5[V/cm])=5.37±0.30

We estimate T_0 by analysis for PI0.

NEW PROBLEM $\sim T_0$ calibration by PI0 \sim

Where is T_0 ?

We calibrated T_0 by using PI0 gas.

"invisible region"

	our measurement	Garfield
CD	113±4.8	116.7
V_{drift}	?	5.37

ASSUMPTION

PIO gas give also some consistency in V_{drift}. V_{drift}(PIO@E=108.5[V/cm])=5.37±0.30

We estimate T_0 by analysis for PI0.

 Obtain the value of end point(Z_{end}) by fitting the right edge.
Obtain Z-offset by using T₀ from P10 test.
Obtain drift-length(L_{measure}) from 1, 2.

 Obtain the value of end point(Z_{end}) by fitting the right edge.
Obtain Z-offset by using T₀ from PI0 test.
Obtain drift-length(L_{measure}) from 1, 2.

 Obtain the value of end point(Z_{end}) by fitting the right edge.
Obtain Z-offset by using T₀ from P10 test.
Obtain drift-length(L_{measure}) from 1, 2.

 Obtain the value of end point(Z_{end}) by fitting the right edge.
Obtain Z-offset by using T₀ from P10 test.
Obtain drift-length(L_{measure}) from 1, 2.

 Z_{end} and $V_{drift}(PI0)$.

4. Calibrate V_{drift} to make consistency in L_{measure} and L_{true}. (L_{true} = 254mm)

As a result, V_{drift} includes error originated from

 Obtain the value of end point(Z_{end}) by fitting the right edge.
Obtain Z-offset by using T₀ from P10 test.
Obtain drift-length(L_{measure}) from 1, 2.

<u>Ar-CF4-iso C4HI0(94:3:3) TEST</u>

We tested the following condition.

E=80, 100, 120, 135, 150[V/cm] B=1[T]

<u>RESULTS</u>

E[V/cm]	N _{eff}	# of tracks
80	23±6	~21,000
100	21±8	~18,000
120	25±9	~17,000
135	24±9	~16,000
150	21±2	~64,000

No Problem with Electron Attachment

<u>COMPARISON TO GARFIELD</u> <u>~DriftVelocity~</u> Ar-CF₄-isoC₄H₁₀(94:3:3)

<u>COMPARISON TO GARFIELD</u>

~DiffusionConstant~ Ar-CF4-isoC4H10(94:3:3)

<u>SUMMARY</u>

We tested Ar-CF4-isoC4H10(94:3:3) as GEM-TPC gas, (cosmic-ray test, E=80,100,120,135,150[V/cm], B=1[T]) and compared with GARFIELD.

CONCLUSIONS

We can confirm Ar-CF₄-isoC₄H₁₀ (94:3:3) work as GEM-TPC gas $@E=80\sim150[V/cm]$ (N_{eff} seems to be O.K.)

Discrepancy can be seen between our results and garfield. (especially at high electric field)

<u>PLANS</u>

$\begin{array}{l} Bito-san(TUAT) \text{ is going to} \\ measure V_{drift} \text{ in our condition independently.} \\ \text{So, we'd like to compare the results to ours.} \end{array}$

 Test with other E,B field , same gas E=50,180,...[V/cm] B=0[T]

Test with other gases
Ar-CF4-isoC4H10(95:3:2)
Ar-CF4-isoC4H10(96:3:1)

Study about advantage of CF4 gas mixtures

CHECK H.V. SUPPLIER

Chamber Sketch

 $V_{pad}=0$

 R_{F}

V_c

DIFINITION

I_{measure} : indicated current value I_{caluculate} : caluculated from voltage

