

ILC Cost Versus Performance (Parameter Choices)

Tor Raubenheimer SLAC

Most slides from September 2006 MAC meeting

Motivation for Parameters

- Parameter plane established at KEK ILC mtg
- TESLA TDR pushed parameters:
 - Emittance dilution
 - Disruption and kink instability
 - Luminosity enhancement
- Parameter plane established for flexibility in achieving goal of 500 fb-1 in 4 years
 - Accelerators rarely optimize at design parm.
 - SLC, HERA, PEP-II, KEKB, DAPHNE, ...
 - Linear collider has fewer options for optimization
 - Already used most tricks to maximize specific luminosity

Parameters

TESLA peak luminosity

 3×10^{34}

regime

(unstable)

space

parameter • Little head room to play with

ILC peak luminosity

 2×10^{34}

parameter space

Schematic from Nick Walker, LCWS 2005

Luminosity Expressions

Well known luminosity expressions:

$$L = \frac{f_{rep}}{4\pi} \frac{n_b N^2}{\sigma_x \sigma_y} H_D \qquad \qquad L = \frac{P_b N}{4\pi mc^2} \frac{H_D}{(\beta_x \beta_y)^{1/2} (\gamma \varepsilon_x \gamma \varepsilon_y)^{1/2}}$$

• Can also be written in term of δ_B , n_v , or D_v :

$$L \propto \frac{P_{beam}}{E_{cms}} \sqrt{\frac{\delta_{\rm B}\sigma_z}{\gamma \mathcal{E}_y \beta_y}} H_D \Big(1 + \big(1.5 \mathrm{Y} \big)^{2/3} \Big) \qquad L \propto \frac{P_{beam}}{E_{cms}} \sqrt{\frac{1}{\gamma \mathcal{E}_y \beta_y}} \eta_\gamma H_D$$
 ~ backgrounds
$$L \propto \frac{P_{beam}}{E_{cms}} \frac{D_y}{\sigma_z} H_D$$
 ~ lP dynamics
$$\delta_{\rm B} \propto \frac{N^2 \gamma}{\sigma_z (\sigma_x + \sigma_y)^2} \frac{1}{\big(1 + \big(1.5 \mathrm{Y} \big)^{2/3} \big)^2} \qquad \qquad n_\gamma \propto \frac{N}{\sigma_x} \frac{1}{\sqrt{1 + \mathrm{Y}^{2/3}}}$$

Parameter Plane

- Nominal reduced Dy and more reasonable ϵ budget \rightarrow 2x10³⁴ with similar L spectrum
- Provide paths to deal with:
 - IP: kink instability → Lower Dy (LowQ)
 - IP: beamstrahlung → Lower dB (LowQ)
 - Dumps or losses → lower power (LowP)
 - RF pulse length → shorter pulse (LowP)
 - RF peak power → lower current (LowP)
 - LET: emittance preservation → (LargeY)
 - DR: SBI → Lower bunch charge (LowQ)
 - DR: CBI or kicker → fewer bunches (LowP)
 - DR: bunch length → dual stage BC

Example Parameter Sets

Parameter range established to allow operating optimization

		nom	low Q	lrg Y	low P	High L
N	×10 ¹⁰	2		2	2	2
n_b		2820	5640	2820	1330	2820
$\epsilon_{x,y}$	μm, nm	9.6, 40	10, 30	12, 80	10, 35	10,30
$\beta_{x,y}$	cm, mm	2, 0.4	1.2, 0.2	1, 0.4	1, 0.2	1, 0.2
$\sigma_{x,y}$	nm	543, 5.7	495, 3.5	495, 8	452, 3.8	452, 3.5
D_y		18.5	10	28.6	27	22
$\delta_{\!\scriptscriptstyle BS}$	%	2.2	1.8	2.4	5.7	7
$\sigma_{\!$	μm	300	150	500) 200	150
P_{beam}	MW	11	11	11	5.3	11
Lumi	10^{34}	2	2	2	2	5

Parameter Trades

- Parameters can be traded against each other to maintain luminosity while overcoming specific difficulties → Parameter Plane
- Gradient impact is known although might want to revisit this
- Two main parameter-based issues (I think):
 - Beam power and number of bunches per pulse and perhaps per second
 - Later relates to the minimum damping ring size
 - Former relates to the rf configuration
 - Could imaging repackaging rf sources for higher rep rate or longer rf pulse length but lower pulse current (fewer sources for same P_{beam})

Parameter Limitations Opinions (1)

- Damping rings
 - Average current is probably not at the limit
 - Bunch length may have further room
 - Single bunch charge is a question
 - Vertical emittance not limited
 - Damping times could be decreased
 - Kickers are pushed to limit
- BC
 - Two-stage can achieve the ~150 um bunches
 - Single-stage compressor with linearization might work
 - Might reduce initial collimation stages

Parameter Limitations Opinions (2)

- Main linac
 - Lower average beam current reduces the rf power requirements
 - Usually lower current needs longer fill but some solutions
 - Want to maintain beam power and single bunch charge for luminosity but can reformat the bunch train with higher rep rate or longer rf pulse length
 - Vertical emittance is not limited
- Beam delivery system
 - Length set by 1 TeV and collimation issues
 - Probably not background limited
 - Extraction line can handle larger $\delta_{\rm B}$
 - Beta function could be reduced (increases L for same rf power or shorter bunch train)

Parameter Plane Costs

- Four main cost guesses (I don't know costs):
 - Single stage BC (-1%)
 - Eliminates options of LowP and LowN
 - Increases risk for DR, LET, abd BDS
 - Reduced RF system (-2% and another -1% civil)
 - Only allows LowP parameters at full energy
 - Increases risk in LET and BDS but reduces risk in DR
 - Possible to upgrade in quasi-adiabatic manner
 - Smaller damping ring circumference (-2~4%)
 - Eliminates LowQ or only allows LowP parameters
 - Increases DR risk hard to upgrade
 - Simpler extraction line design → (-0.3%)
 - Increases risk in BDS; Eliminates option of LowP and limits peak luminosity

Luminosity & Backgrounds

K. Buesser, T. Maruyama, W. Kozanecki, etc.

Other Configuration Options

- Major scope/layout considerations
 - 1. Centralized injector complex
 - 2. Common booster linacs
 - 3. Dog-bone damping ring
 - 4. Polarized RF gun
 - 5. Undulator vs conventional e+ source
 - 6. Single stage BC and other RTML options
 - 7. Lower current linac operation
 - 8. Lower linac energy
 - 9. Reduced linac overhead
 - 10. One vs two linac tunnels
 - 11. Beam Delivery System options (500 GeV max)

ILC Summary

- Clear costs for maintaining parameter plane versus adopting lowP parameters
 - How important is luminosity goal of 500 fb-1 in 4 years?
 - Personally believe that operating space will be needed to meet design goals but can lower the goals
 - How important is luminosity spectrum (Hitoshi's talk)?
 - Which is preferable 7% reduced energy or LowP only?
 - Reduced RF with full DR → L ~ const vs Energy
 - Still have parameter plane at reduced luminosity of ~1x10³⁴ with reduced rf system
 - Is 50% luminosity worth 3% TPC?
 - Would this be an acceptable option for experimentalists?

Final Personal Comments (1)

- Timescale for the ILC has been delayed
 - Wait for LHC data ~2011
 - ILC TDP will be ready on similar timescale
 - ILC technical construction timescale is now ~2015
- Want to have ILC project ready to start next phase when LHC data could motivate this
 - However necessary energy reach will likely not be clear and the CLIC CRD will be complete around TDP timescale and will likely estimate a lower cost
- What information would be desired to commit
 - Better understanding of costs, risks, and timescales of both options

Final Personal Comments (2)

- GDE has only considered SC RF thus far
- Costs are one *major* limitation for LC project
 - Cost savings was estimated by USTOS for X-band
 - 25% cost savings of X-band klystron-based system versus SC RF LC based on USTOS committee chaired by G. Dugan
 - Probably greater for CLIC X-band LC
 - ITRP was not able to compare costs needed costing done with common methodology
- ITRP charge specified construction before 2010
- Given slower ILC schedule and advances of TBA technology, it is time for a cost study of both options using common methodology
 - GDE is the only organization that can do this!