Background and Machine Detector Interface

D. Schulte

- Luminosity and Spectrum
- Crossing Angle
- Background
- Masks etc.
- Lots of work had been done for the CLIC Physics Report need to get dust of different tools
 will put more emphasis on new calculations on demand

Sendai, March 4 2008

Basic Parameters

CLIC aims to achieve a luminosity similar to the ILC level at much higher energy

		CLIC	ILC	NLC
E_{cms}	[TeV]	3.0	0.5	0.5
f_{rep}	[Hz]	50	5	120
N	$[10^9]$	3.7	20	7.5
ϵ_y	[nm]	20	40	40
L_{total}	$10^{34} cm^{-2} s^{-1}$	5.9	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	2.0	1.45	1.28
n_{γ}		2.2	1.30	1.26
$\Delta E/E$		0.29	0.024	0.046

- Luminosity is delivered in 50 pulses per second
- ullet Each pulse lasts about $150\,\mathrm{ns}$, contains 312 bunches spaced by $0.5\,\mathrm{ns}$
- In ILC luminosity is delivery by pulses with 5 Hz
- ullet Each pulse is about $1 \, \mathrm{ms}$ long
- ⇒ Very different regime
 - event reconstruction
 - background conditions
- High energy also affect background level

Interaction Point Layout

- ullet Distance L^* between final quadrupole and interaction point can be chosen
 - below $3.5\,\mathrm{m}$ luminosity is compromised (R. Tomas)
 - $4.3\,\mathrm{m}$ and $3.5\,\mathrm{m}$

yield similar luminosity

- Design of final doublet is challenging
 - high gradient required
 - support needs to be very stable detectors can be quite noisy
 - a permanent magnet design has been done (S. Russenschuck et al.)
 - but energy adjustment of beam delivery system is limited
 - superconducting quadrupoles are very though in particular stability
 - but would allow energy adjustment
 - maybe a combined approach is possible

Luminosity and Luminosity Spectrum

- Four main sources of energy spread at the IP
 - initial state radiation
 - ⇒ unavoidable
 - ⇒ has sharp peak
 - beamstrahlung
 - ⇒ similar shape as ISR
 - ⇒ can be reduced by reducing luminosity

- single bunch energy spread

due to single-bunch beam loading and RF curvature

- ⇒ part cannot be avoided
- \Rightarrow helps in stabilising the linac
- $\Rightarrow \mathcal{O}(1\%)$ (better for ILC)
- ⇒ now included in simulation

bunch-to-bunch and pulse-to-pulse variations

$$\Rightarrow \mathcal{O}(0.1\%)$$

Impact of Luminosity Spectrum

- Reduced production in a resonance
 - ⇒ effectively reduced luminosity
- Impact on threshold scans
 - ⇒ modified effective cross section, step is less steep
- Two-peak separation
 - ⇒ mainly due to single bunch energy spread
- Missing mass analysis
 - ⇒ initial conditions are wrong
- Impact on constraint fits
 - ⇒ initial conditions are wrong
- Difficulty in spectrum reconstruction
 - ⇒ important value not directly measured, correlations are important

Beamstrahlung and Luminosity Optmisation

Total luminosity for $\Upsilon \gg 1$

$$\mathcal{L} \propto rac{N}{\sigma_x} rac{\eta}{\sigma_y} \propto rac{n_{\gamma}^{3/2}}{\sqrt{\sigma_z}} rac{\eta}{\sigma_y}$$

large $n_{\gamma} \Rightarrow$ higher $\mathcal{L} \Rightarrow$ degraded spectrum

$$\mathcal{L}_{0.01} \propto \frac{\left(1 - \exp\left(-n_{\gamma}\right)\right)^{2}}{\sqrt{n_{\gamma}}} \frac{\eta}{\sqrt{\sigma_{z}}\sigma_{y}}$$

chose n_{γ} , e.g. maximum $L_{0.01}$ or $L_{0.01}/L=0.4$ or . . .

$$\mathcal{L}_{0.01} \propto rac{\eta}{\sqrt{\sigma_z}\sigma_y}$$

Reduction of Incoming Energy Spread

- Bunch-to-bunch and pulse-to-pulse variations should be limited to about 0.1%
 RMS
 - ⇒ already difficult to achieve
 - ⇒ a reduction would have enormous impact on machine design
- Intra-bunch energy spread can be reduced by reducing the bunch charge
 - ⇒ change is always relative to the optimum choice for a given accelerating structure
- Currently optimise for 0.35% RMS energy spread
 - \Rightarrow seem to be able to reach 0.1% with $N=0.5N_0$
 - ⇒ full test of beam stability required
 - luminosity L_1 is reduced to about 30%
 - beamstrahlung is also reduced

Luminosity Spectrum Reconstruction

- Luminosity Spectrum reconstruction is a challenging task
- One proposed method is to measure Bhabha angles

$$p_{\perp,1} = -p_{\perp,2} \quad \Rightarrow \quad \frac{p_1}{p_2} = \frac{\sin \theta_2}{\sin \theta_1}$$

- Initial transverse momenta could be different
 - is noticeable in ILC
 - ⇒ needs to be studied for CLIC

- Need model to seperate the beams
- Simple test remix colliding beam particle energies
 - ⇒ different spectrum
 - ⇒ correlations are important

⇒ Further study needed

Background Sources

Machine produced background before IP

```
beam tails from linac
synchrotron radiation
muons
beam-gas, beam-black body radiation scattering (linac+BDS)
```

beam-beam background at IP

beamstrahlung
coherent pair creation
incoherent pair creation
hadron production
neutrons

spent beam background

backscattering of particles especially neutrons

Crossing Angle

- Three main constraints on crossing angle exist
 - extraction of the spent beams without excessive losses lower limit
 - multi-bunch kinck instability
 lower limit
 - synchrotron radiation emission in the detector solenoid field upper limit
- Simplified simulations of the effect of synchrotron radiation in a detector field of $B_z = 4 \,\mathrm{T}$ required (F. Zimmermann)

$$\theta_c \le 20 \, \mathrm{mradian}$$

- ⇒ this study needs to be repeated with more realistic fields
- The multi-bunch kinck instability is given by

$$\Delta y = \frac{\Delta y_0}{1 - n_c \frac{4Nr_e}{\gamma \theta_c^2} \frac{\delta y'}{\delta \Delta y_0}}$$

Coherent Pairs

- Coherent pairs are generated by a photon in a strong electro-magnetic field
- Cross section depends exponentially on the field
- \Rightarrow Rate of pairs is small for centre-of-mass energies below $1\,\mathrm{TeV}$
- ⇒ In CLIC, rate is substantial

Need to foresee large enough exit hole (about 10mradian)

Spent Beam and Crossing Angle

- Crossing angle needs to be large enough to extract spent beam
- For new parameters we need 10mradian angle
 - plus space for quadrupole (2cm in an old design)
- ⇒ 20 mradian seems OK
 - Somewhat smaller angles seem feasible
 - maybe 14 mradian

Incoherent Pair Production

Three different processes are important

- Breit-Wheeler
- Bethe-Heitler
- Landau-Lifshitz

The real photons are beamstrahlung photons

The processes with virtual photons can be calculated using the equivalent photon approximation and the Breit-Wheeler cross section

Deflection by the Beams

Most of the produced particles have small angles

The forward or backward direction is random

The pairs are affected by the beam

⇒ some are focused some are defocused

Maximum deflection

$$\theta_m = \sqrt{4 \frac{\ln\left(\frac{D}{\epsilon} + 1\right) D\sigma_x^2}{\sqrt{3}\epsilon \sigma_z^2}}$$

Impact of the Pairs on the Vertex Detector

- Simplified study using simple cylinder without mass
 - coverage is down to 200 mradian
- Simulating number of particles that hit at least once
 - experience indicates
 that number of hits is
 three per particle
 - but needs to be done with real detector parameters
- \Rightarrow At $r_1 \approx 30 \,\mathrm{mm}$ expect 1 hit per train and mm^2
- ⇒ Detector should be a bit larger
 - but depends on technology

Mask Design

- Current CLIC design corresponds to old TESLA design
 - improvement is possible
 - quadrupole can be further out
- Outer mask suppresses backscattered photons
 - maybe less coverage would be sufficient

- Inner mask prevents backscattering of charged particles
 - distance needs to be small enough that exit hole is smaller than vertex detector (neutrons)

Inner Mask

- Low-Z material reduces backscattering
 - it allows electrons and positrons to penetrate with small probability of scattering
 - it reduces energy of backscattered charged particles via ionisation
- Required thickness is about 10 cm

- But hole overlaps with vertex detector
 - ⇒ could have backscattering through the hole, if not careful

Intra-Pulse Interaction Point Feedback

- Reduction of jitter is dominated by feedback latency
 - IP to BPM
 - electronics
 - Kicker to IP
- \bullet Assuming 40 ns one can hope for about a factor 2
- Only cures offsets

• Integration in detector needs to be studied

Hadronic Background

A photon can contribute to hadron production in two ways

- direct production, the photon is a real photon
- resolved production,the photon is a bag full of partons

Hard and soft events exist e.g. "minijets"

Hadronic Events

- Hadronic events with $W_{\gamma\gamma} \geq 5\,\mathrm{GeV}$
- Most energy is in forward/backward direction
 - $E_{vis} \approx 450\,\mathrm{GeV}$ per hadronic event for no cut
 - $E_{vis} \approx 23 \, \mathrm{GeV}$ for $\theta > 0.1$
 - $E_{vis} \approx 12 \, \mathrm{GeV}$ for $\theta > 0.2$
 - 20% from e^+e^- (cannot be reduced)

- Charged tracks from hadronic events add about 20% to the charged hits in the vertex detector
- Secondary neutron flux can be noticeable

Luminosity and Background Values

		CLIC	CLIC	CLIC	CLIC(vo)	ILC	NLC
E_{cms}	[TeV]	0.5	1.0	3.0	3.0	0.5	0.5
f_{rep}	[Hz]	100	50	50	100	5	120
n_b		312	312	312	154	2820	190
σ_x	[nm]	115	81	40	40	655	243
σ_y	[nm]	2	1.4	1	1	5.7	3
Δt	[ns]	0.5	0.5	0.5	0.67	340	1.4
N	$[10^9]$	3.7	3.7	3.7	4.0	20	7.5
ϵ_y	[nm]	20	20	20	10	40	40
L_{total}	$10^{34} cm^{-2} s^{-1}$	2.2	2.2	5.9	10.0	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	1.4	1.1	2.0	3.0	1.45	1.28
n_{γ}		1.2	1.5	2.2	2.3	1.30	1.26
$\Delta E/E$		0.08	0.15	0.29	0.31	0.024	0.046
N_{coh}	10^{5}	0.03	37.0	3.8×10^{3}	?		
E_{coh}	$10^3 TeV$	0.5	1080	2.6×10^{5}	?	_	
n_{incoh}	10^{6}	0.05	0.12	0.3	?	0.1	n.a.
E_{incoh}	$[10^6 GeV]$	0.28	2.0	22.4	?	0.2	n.a.
n_{\perp}		12.5	17.1	45	60	28	12
n_{had}		0.14	0.56	2.7	4.0	0.12	0.1

- Target is to have about one beamstrahlung photon per beam particle
 - ⇒ average energy loss is larger in CLIC than ILC
- Note: shorter bunches increase the photon energy but not the number

Machine Background

Beam tails can produce background in the detector/ damage the machine

⇒ use collimation

synchrotron radiation before final doublet

 \Rightarrow collimation of photons

synchrotron radiation in final doublet

⇒ collimation of beam tails

muons due to beam loss (collimation)

- ⇒ distance
- ⇒ magnetised iron collimators
- ⇒ detector timing/granularity

beam scattering on black-body radiation

⇒ calculate (seems not a big problem sofar)

beam-gas scattering

 \Rightarrow improve vacuum (H. Burkhardt: 10^{-9} torr to equal black body radiation)

Muon Rate

- Rate depends critically on assumption about beam halo
 - expect small values (some 10^{-4} for a vacuum pressure of $10\,\mathrm{ntorr}$, H. Burkhardt, needs more studies)
 - SLC experience has been bad (up to 0.01)
- \bullet For a beam halo of 10^{-3} we expect 5×10^4 muons per train in the detector
- Tunnel fillers can reduce this by an order of magnitude
- Better vacuum will help
 - beam stability requires very good vacuum
- But the detector will need to be able to cope with many muons
- Would follow ILC strategy
 - foresee place for tunnel fillers
 - but install them only if necessary

Conclusions

- Machine-detector interface considerations are vital for CLIC
- The luminosity has a pronounced spectrum
 - would aprreciate more feedback on relevance
 - need to investigate the spectrum reconstruction more
- Significant background exists
 - impacts detector design, e.g.
 vertex detector
 masking system
- Machine needs components in the detector
 - final quadrupoles
 - instrumentation
- We have a number of tools to study machine detector interface issues
 - we need more people to use them