

BDS Way forward

Andrei Seryi

Materials for discussion TILC-08

BDS planning strategy

Do not proceed with:

 Design, or engineering of near-standard systems (e.g. beamline vacuum or magnets), or detailed consideration of requirements for CFS

Do focus on:

- Science, with emphasis on advanced ideas, which promise breakthroughs in performance/cost, reaching higher E, reduction of length, e.g.:
 - BDS for CLIC, γγ design & system tests, crystal collimation, ...
- Critical areas of design
 - IR & detector integration, FD, ATF2, ...
- Areas where new collaborators are joining
 - Recent work at SLAC with BARC, India, on beam dump design

Explore synergies

- LHC crab cavity design, ...
- Expect to revise strategy:
 - When LHC results will allow determining the specific configuration of ILC

Beam Delivery 5yr plan, ATR

BDS design for Beam delivery overall design specific chosen configuration of ILC Collimation, beam dump subsystem design BDS & MDI subsystems studies at FACET tests & studies of generic phase subsystems designed for specific ATF2 configuration BDS prototype commissioning & accelerator physics study IR and FD Final Doublet SC prototype design for the SC FD specific ILC Vibration & stability study for ATF2 configuration upgrade **FY11 FY09 FY10 FY12 FY13**

Interaction region detector-machine integration

LumiCal

Vacuum Pump

Graphite

electronics/connectors

cooling

Discussion of IR Beam Space Real Estate

led by: Brett Parker, BNL

Highly Complex physics/engineering issues

Totally integrated design between machine & detector

Space for cable

Shielding Tu

Critically important for detector design

Final Doublet

- Design: address tight space constraints, the need for versatile beam orbit and aberration correction, challenging mechanical stability
- Full length prototype: address performance and system level integration

X (mm)

ATF2: Beam delivery model

Built for ILC. Advanced accelerator study and beam handling applicable to any single path beamlines such as LCLS, XFEL.

ATF collaboration: >200 scientists. ATF MOU: 20 institutions worldwide

BDS & MDI at FACET

- Proposed FACET includes ESA area primarily dedicated for BDS/MDI subsystem tests
 - Energy spectrometers and collimation system tests
 - Beam diagnostics
 - Detector component studies
 - System test of $e = > \gamma$ conversion for $\gamma \gamma$ option
 - Study forward region detector and GAMCAL ...

Benefits for US of BDS R&D

- Direct: maintain leadership in key areas of US expertise, needed to reach the energy frontier
- Indirect: synergy with US science
 - ATF2: advanced accelerator study and beam handling applicable to any single path beamlines such as LCLS, XFEL...
 - Instrumentation, high availability power supplies, etc., are applicable to many future projects such as NSLS-2, LCLS...
 - Interaction region integration and FD design: synergy with LHC IR upgrade and Super-B IR
 - Collimation research: synergy with LHC, already engaged in design of LHC II-stage collimation system
 - Crab cavity design: already engaged in LHC crab.cav. study
 - FACET and ESA research: reach out to laser and plasma science communities, engaging them in our scientific quest, thus increasing scientific value of ILC