IP and Bunch Parameters for ILC

4 March 2008

Andrei Seryi SLAC

Motivation to discuss range of parameters

 Parameters for 200, 350 & 500 GeV CM – requested earlier for ILC benchmarking studies

 Discuss dependence on L* – important for performance/cost optimization of any LC ILC parameters. 90-350 numbers are tentative. Dec 07, Integration group. Based on approximate analytical dependencies. The first step. Original plan – the second step to involve more detailed study, include dependence on L* and will be produced at the time of Sendai GDE meeting. C.Adolphsen, E.Paterson, N.Phinney, T.Raubenheimer, A.Seryi, P.Tenenbaum, et al

	Calib.90	Nom.200	Nom.350	Nominal	Upgr.1TeV
Ecms [GeV]	90	200	350	500	1000
Ν	2.0E+10	2.0E+10	2.0E+10	2.0E+10	2.0E+10
nb	2625	2625	2625	2625	2625
Tsep [ns]	369.2	369.2	369.2	369.2	369.2
lave in train [A]	0.0087	0.0087	0.0087	0.0087	0.0087
f	2.5	5	5	5	4
Electron polarization, %	N/A‡	80	80	80	80
Positron polarization, %	N/A‡	N/A†	N/A†	N/A†	N/A†
Electron E-spread, %	0.70	0.35	0.20	0.14	<0.14
Positron E-spread, %	0.50	0.25	0.10	0.07	<0.07
IP Parameters					
bx	7.5E-02	2.6E-02	2.0E-02	2.0E-02	3.0E-02
by	2.0E-03	6.0E-04	4.0E-04	4.0E-04	3.0E-04
sigx_effective	3.3E-06	1.2E-06	7.6E-07	6.4E-07	5.5E-07
sigy_effective	3.5E-08	1.3E-08	7.4E-09	5.7E-09	3.3E-09
gamepsX effective	1.3E-05	1.0E-05	1.0E-05	1.0E-05	1.0E-05
gamepsY effective	5.4E-08	5.6E-08	4.7E-08	4.0E-08	3.6E-08
L* [m]	3.5	3.5	3.5	3.5	3.5
BDS Inc. t-t jitter, sigma	0.5	0.5	0.5	0.5	0.5
BDS Inc. b-b jitter, sigma	0.1	0.1	0.1	0.1	0.1
Sigz	3.0E-04	3.0E-04	3.0E-04	3.0E-04	3.0E-04
Dx	0.03	0.13	0.17	0.17	0.11
Dy	3.3	11.4	17.5	19.1	18.9
Uave	0.002	0.010	0.027	0.047	0.109
delta_B	0.0002	0.003	0.012	0.023	0.050
P_Beamstrahlung [W]	1.9E+02	1.4E+04	9.0E+04	2.4E+05	8.4E+05
Ngamma	0.26	0.74	1.09	1.29	1.43
Hd	1.9E+00	1.8E+00	1.7E+00	1.7E+00	1.5E+00
Geo Lum	1.8E+36	2.8E+37	7.4E+37	1.1E+38	1.8E+38
Lum. (m-2 s-1)	3.3E+36	4.7E+37	1.2E+38	1.9E+38	2.8E+38

ILC parameters. 90-350 numbers are tentative. Dec 07, Integration group. Based on approximate analytical dependencies. The first step. Original plan – the second step to involve more detailed study, include dependence on L* and will be produced at the time of Sendai GDE meeting. C.Adolphsen, E.Paterson, N.Phinney, T.Raubenheimer, A.Seryi, P.Tenenbaum, et al

	Calib.90	Nom.200	Nom.350	Nominal	Upgr.1TeV			
Ecms [GeV]	90	200	350	500	1000			
N	2.0E+10	2.0E+10	2.0E+10	2.0E+10	2.0E+10			
nb	2625	2625	2625	2625	2625			
Tsep [ns]	369.2	369.2	369.2	369.2	369.2			
lave in train [A]	0.0087	0.0087	0.0087	0.0087	0.0087			
f	2.5	5	5	5	4			
Electron polarization, %	N/A‡	80	80	80	80			
Positron polarization, %	N/A‡	N/A†	N/A†	N/A†	N/A†			
Electron E-spread, %	0.70	0.35	0.20	0.14	<0.14			
Positron E-spread, %	0.50	0.25	0.10	0.07	<0.07			
Notes:								
	n numbor	of accur	zoso notions fr	2.05.02 Sr. collim	3.0E-02			
wakes, tor metho	d to chai	nge beta	*, tor be	am jittei	, etc.,			
that would need	to be fur	ther veri	fied. <u>Moo</u>	del dep	<u>endent</u> .			
gamepsX effective	00 <u> </u>							
gameps'/ affactiva								
			3.5	3.5	3.5			
† Positron polarization is not required in the baseline. Since								
the $e+$ baseline source can still give $\sim 30\%$ polarized								
beams the BDS r	olarime	ters are i	ncluded (for both				
	•••••							
electrons and po	sitrons in	the base		19.1				
* At 90GeV CM, neither electron no positron polarization								
P Beamsthating $[W]$ 1.9E-702 1.4E+04 9.0E+04 1.4E+05 3.4E+05 3.4E+05								
die required in me buseline. me bus polarimeters dre nor								
designed to measure polarization of either electrons or								
positrons below 2	200GeV	CM in th	e baselin	e.				
Lum. (m-2 m-1)	3.38+36	4.78+37	1.26-538	1.98+38	2.854.38			

L* dependence

• The original plan was to study the L* dependence (in the range of 3.5-4.5m) before the Sendai meeting. This plan cannot be now completed.

• Thus, results below are based on a <u>model</u> as of early December 2007, which was <u>not</u> <u>scrutinized</u> and <u>may have some flaws</u>, and <u>too optimistic assumptions</u>.

- The information, even tentative, may still be useful for discussion of detector optimization.
- The case of doubling L* also shown.
- Tentative dependence of luminosity on L*
 - Reduced by ~10-20%
 for L* 3.5m => 4.5m
 - Reduced ~factor of two for 3.5m=> 7.0m

5, A.Seryi, 3/4/8

Doubled L*

- Illustration of FD with L*=3.5m and 7.0m
- If determined by incoming and EXT apertures, the collimation depth tightens slower than linear, if one can increase those apertures
- When/if coll.depth would be defined by VX, it will tighten ${\sim}1/L^*$

Rays show trajectories of possible SR photons. Amount of rays is not quantitative. 6, A.Seryi, 3/4/8