• • GLD Background

Toshinori Abe 2008/03/05

- o We study background effects for GLD.
- We develop beam line simulation program, LCBDS, based on GEANT4.
- Results we show today are obtained for three days work.

• • Theme

- O Simulation tool (LCBDS)
- O Setting
- O The following items are charged to me for this talk.
- 1. Allowance of W mask thickness to protect ECL from backgrounds.
- 2. Neutron background from beam dump.
- 3. Vacuum vs. backgrounds

• • • Simulation tool (LCBDS)

LCBDS

- Beam line full simulation program based on GEANT4 (+root).
- Beam line geometry is given by parameter file (no hard cording). →SAD parameter file can be transferred to the file.
- CAIN output file can be used to generate events.
- o Good user's guide (160pages)

• • Excuses

- We can not find out the some of latest important parameters according to 14mrad crossing angle.
 - Beam line geometries (incoming and extraction)
 - DID

• . . .

• • GLD detector model

Scale is not conserved

• • Pairs event display

Can WMASK protect ECAL and HCAL from backgrounds?

Deposit energy vs. W thickness

Pairs Edep(ECAL) Wthick=1.0cm

9 3/4/2008

Pairs Edep(ECAL) Wthick=10cm

• • GLD + Extraction beam line

• • Disaster...

250GeV e beam can not pass through the extraction line →We do not have right anti-DID field now.

• • Temporal fix

250GeV e beam reaches dump.

We can not see any neutrons with 200,000 events.

→ We need more statistics or inflated neutron production.

- o We study it by applying 1000Pa in IR to save CPU time and scaling it assuming linear relation between vacuum pressure and background amounts.
- We take care of the interaction between beamstrahlung and gas.

3/5/2008

• • Vacuum vs. BKG / BX

Detector	10 ⁻⁷ Pa	10 ⁻⁶ Pa
BCAL	0.6GeV	6GeV
Vertex (first layer)	2X10 ⁻⁷ GeV	2X10 ⁻⁶ GeV
TPC	7X10 ⁻⁸ GeV	7X10 ⁻⁷ GeV
Endcap ECL	3X10 ⁻⁵ GeV	3X10 ⁻⁴ GeV
Endcap HCAL	3X10 ⁻⁴ GeV	3X10 ⁻³ GeV

3/5/2008

• • Summary

- Today we show prompt background studies.
- o The studies show some results.
- We need the latest parameters related to beam line, MDI, ..., for further understanding of background efforts.