Study of Monolithic Active Pixel Sensor for electromagnetic calorimeter

3rd - 6th March 2008 TILC08 Workshop, Sendai, Japan

T. Martin, Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson
University of Birmingham

J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy Imperial College London

J.P. Crooks, M. Stanitzki, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani Rutherford Appleton Laboratory

CALICE-UK MAPS group

Outline

- MAPS (Monolithic Active Pixel Sensor) ECAL concept
- Test sensor R&D activity
- Status summary

MAPS (Monolithic Active Pixel Sensor) ECAL concept

- 50µm X 50µm small cell size
- Each cell has only one secondary particle in most cases (Counting hits for measuring energy)
- Charge is collected by diffusion (~100µm order)
- ECAL mechanical structure has no change (compared to analogue ECAL)

MAPS (Monolithic Active Pixel Sensor) ECAL concept

- 50µm X 50µm small cell size
- Each cell has only one secondary particle in most cases (Counting hits for measuring energy)
- Charge is collected by diffusion (~100µm order)
- ECAL mechanical structure has no change (compared to analogue ECAL)

Event display

Pixel layout

Substrate (left floating)

4 diodes

Preshaper vs Presampler

- 160 transistors
- 27 unit capacitors

4 diodes

189 transistors

34 unit capacitors

1 resistor (4Mohm)

Sensor layout

Preliminary tests: Laser Scan

Focussed Laser

- 4ns pulse at 1064nm wavelength
- Focussed to $4x4 \mu m^2$ on rear of sensor
- Uncalibrated analogue signal
- Step by 5µm in x and y
- Record & plot signal size for each position

12μm epitaxial-layer + Deep P-well

Preliminary tests: Effect of Deep P-Well

α source test (preliminary)

Results from Source runs

β source test (preliminary)

• β source (Thallium)

red ->with source, region0
green->with source, region1
blue->no source, region0
purple->no source, region1
(Both region1 and region0 are preshaper)

Beam test setup

DESY BEAM TEST CONFIGURATION

DESY test beam area setup

Beam test DAQ

Example for X correlation plot of two layers (Very preliminary)

Status summary

- MAPS based ECAL being studied.
- Test beam was operated as first test.
- Various analyses are ongoing for characterizing test sensor.
- Simulation will be improved by input from sensor test result.
- We may have second beam test in this year.

Backup(1) Geant4 Simulation

- 20 GeV single e⁻ or μ⁻
- 15μm (Si sensitive thickness) X 50μm X 50μm (cell size)
- No charge diffusion, no threshold and no noise is applied yet.

Charge sharing effects at cell boundary

Backup(2) Geant4 Simulation

- 1 GeV or 180 GeV single e
- 15μm (Si sensitive thickness) X 50μm X 50μm (cell size)
- No charge diffusion, no threshold and no noise is applied yet.

Similar cell hit energy distributions except for number of cell hits

Backup (3) Charge collection simulation

- ~50% of the charge collected when a MIP hits the N-well
- Collected charge increases with the diode size

▼ 1.8µm

5

Backup(4) Digitization process

Digital ECAL, essential to simulate charge diffusion, noise, in G4 simulations

Backup(5) Example of energy resolution simulation after digitization

Backup (6) Geant4 simulation for Si thickness dependence at 1cmX1cm cell

- 20 GeV single electron
- Cell size is 1cm X 1cm
- No charge diffusion, no threshold and no noise is applied.

Backup (7) Geant4 simulation of cell size dependence

- 100GeV single e
- 15µm Si sensitive thickness
- No charge diffusion, no threshold and no noise is applied.

Backup(8) The Designs

Backup (9) Cooling and power

- Power Savings due to Duty Cycle (1%)
- Target Value for existing ECAL ASICS
 - $-4 \mu W/mm^2$
- Current Consumption of MAPS ECAL:
 - 40 μW/mm² depending on pixel architecture
 - Not optimized at all for power consumption
- Compared to analogue pad ECAL
 - Factor 10000 more Channels
 - Factor 10 more power

Backup (10): DAQ issues

- $O(10^{12})$ channels
- Physics rate is not the limiting factor
- Beam background and Noise will dominate
- Assuming 2625 bunches per 1ms and 32 bits per Hit
 - 10⁶ Noise hits per bunch
 - Beam background per bunch would be less than noise hits (roughly estimated from GuineaPIG)
- Per bunch train
 - ~80 Gigabit / 10 Gigabyte
 - Readout speed required 400 Gigabit/s
 - CDF SVX-II can do 144 Gigabit/s already

Shift crews

