CLIC IR Overview

D. Schulte

- Quick overview of IR issues
- Activity in the area has been limited recently
 - BDS lattice design
 - collimation system
 - post collision line
- Activity on MDI and technical beam line components is (re-)starting at CERN

March 4 2008

Luminosity and Background Values

		CLIC	CLIC	CLIC	CLIC(vo)	ILC	NLC
E_{cms}	[TeV]	0.5	1.0	3.0	3.0	0.5	0.5
f_{rep}	[Hz]	100	50	50	100	5	120
n_b		312	312	312	154	2820	190
σ_x	[nm]	115	81	40	40	655	243
σ_y	[nm]	2	1.4	1	1	5.7	3
Δt	[ns]	0.5	0.5	0.5	0.67	340	1.4
N	$[10^9]$	3.7	3.7	3.7	4.0	20	7.5
ϵ_y	[nm]	20	20	20	10	40	40
L_{total}	$10^{34} cm^{-2} s^{-1}$	2.2	2.2	5.9	10.0	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	1.4	1.1	2.0	3.0	1.45	1.28
n_{γ}		1.2	1.5	2.2	2.3	1.30	1.26
$\Delta E/E$		0.08	0.15	0.29	0.31	0.024	0.046
N_{coh}	10^{5}	0.03	37.0	3.8×10^{3}	?		
E_{coh}	$10^3 TeV$	0.5	1080	2.6×10^{5}	?		
n_{incoh}	10^{6}	0.05	0.12	0.3	?	0.1	n.a.
E_{incoh}	$[10^6 GeV]$	0.28	2.0	22.4	?	0.2	n.a.
n_{\perp}		12.5	17.1	45	60	28	12
n_{had}		0.14	0.56	2.7	4.0	0.12	0.1

• Note: low energy CLIC parameters just an illustration

Luminosity and Luminosity Spectrum

- Four main sources of energy spread at the IP
 - initial state radiation
 - ⇒ unavoidable
 - ⇒ has sharp peak
 - beamstrahlung
 - ⇒ similar shape as ISR
 - ⇒ can be reduced by reducing luminosity

- single bunch energy spread

due to single-bunch beam loading and RF curvature

- ⇒ part cannot be avoided
- \Rightarrow helps in stabilising the linac
- $\Rightarrow \mathcal{O}(1\%)$ (better for ILC)
- ⇒ now included in simulation

bunch-to-bunch and pulse-to-pulse variations

$$\Rightarrow \mathcal{O}(0.1\%)$$

Beamstrahlung and Luminosity Optimisation

Total luminosity for $\Upsilon\gg 1$

$$\mathcal{L} \propto rac{N}{\sigma_x} rac{\eta}{\sigma_y} \propto rac{n_{\gamma}^{3/2}}{\sqrt{\sigma_z}} rac{\eta}{\sigma_y}$$

large $n_{\gamma} \Rightarrow$ higher $\mathcal{L} \Rightarrow$ degraded spectrum

$$\mathcal{L}_{0.01} \propto \frac{\left(1 - \exp\left(-n_{\gamma}\right)\right)^{2}}{\sqrt{n_{\gamma}}} \frac{\eta}{\sqrt{\sigma_{z}}\sigma_{y}}$$

chose n_{γ} , e.g. maximum $L_{0.01}$ or $L_{0.01}/L=0.4$ or . . .

$$\mathcal{L}_{0.01} \propto rac{\eta}{\sqrt{\sigma_z}\sigma_y}$$

Final Doublet Jitter

- One support structure
 - relative tolerance on end points $\approx 4-5\sigma_{beam-beam}$
- Two support structures
 - relative tolerance of mid points $\approx 0.7\sigma_{beam-beam}$
 - relative tolerance of end points $\approx 0.64\sigma_{beam-beam}$
- Four support structures
 - relative tolerance of mid points $\approx 0.5\sigma_{beam-beam}$
- ⇒ Only one support seems excluded
- ⇒ Chose two or four supports
 - four is conservative
 - two needs additional tolerance of motion on support

- \bullet For 2% luminosity loss the beam-beam jitter tolerance is $0.28\,\mathrm{nm}$
 - \Rightarrow tolerance for quadrupole supports is 0.14–0.18 nm
 - ⇒ need stabilisation system
- Integration of support and stabilisation system in detector is important to study

Crab Cavity Phase Stability

- Required phase stability can be easily calculated
- What matters is relative phase of electron and positron crab cavity
- Horizontal offset at IP is

$$\Delta x = \frac{\theta_c}{2} \Delta \Phi$$

 \bullet For one 1% luminosity loss $\Delta\Phi \leq 0.011^\circ$

Intra-Pulse Interaction Point Feedback

- Reduction of jitter is dominated by feedback latency
 - IP to BPM
 - electronics
 - Kicker to IP
- \bullet Assuming 40 ns one can hope for about a factor 2
- Only cures offsets

Integration of kicker and BPM in detector needs to be studied

Background Sources

Machine produced background before IP

beam tails from linac synchrotron radiation muons beam-gas, beam-black body radiation scattering

Beam-beam background at IP

beamstrahlung
coherent pair creation
incoherent pair creation
hadron production
secondary neutrons

Spent beam background

backscattering of particles especially neutrons

- Our strategy for these backgrounds is similar to ILC
 - more detailed study needed

Coherent Pairs

- Coherent pairs are generated by a photon in a strong electro-magnetic field
- Cross section depends exponentially on the field
- \Rightarrow Rate of pairs is small for centre-of-mass energies below $1\,\mathrm{TeV}$
- \Rightarrow In CLIC, rate is substantial ($\approx 4 \times 10^8$ per bunch)

Need to foresee large enough exit hole (about 10mradian)

Spent Beam and Crossing Angle

- Lower limits on crossing angle from spent beam and multi-bunch kinck instability
- Crossing angle needs to be large enough to extract spent beam
- Exit hole for spent beam ¿10mradian
 - plus space for quadrupole (2cm in an old design)
- Kinck instability is OK
- Synchrotron radiation emission in solenoid seems OK
- \Rightarrow 20 mradian seems OK
 - Somewhat smaller angles seem feasible
 - maybe 14 mradian

Impact of the Incoherent Pairs on the Vertex Detector

- Simplified study using simple cylinder without mass
 - coverage is down to 200 mradian
- Simulating number of particles that hit at least once
 - experience indicates
 that number of hits is
 three per particle
 - but needs to be done with real detector parameters
- \Rightarrow At $r_1 \approx 30 \,\mathrm{mm}$ expect 1 hit per train and mm^2
- ⇒ Detector should be a bit larger
 - but depends on technology

Mask Design

- Current CLIC design corresponds to old TESLA design
 - improvement is possible and needed
 - quadrupole can be further out
- Outer mask suppresses backscattered photons
 - maybe less coverage would be sufficient

- Inner mask prevents backscattering of charged particles
 - distance needs to be small enough that exit hole is smaller than vertex detector (neutrons)

Beam Delivery System Design

- Design is based on scaled NLC lattice
 - has been strongly optimised by R. Tomas
- Further system optimisation is being used
- Beam-based alignment is being worked on
- First results for feedback indicate gain of 0.1 for ground motion B is OK

Final Focus System Optimisation

- Complex procedure
- It is not clear that we will continue to win a lot
- But beam size from beta-functions and initial emittances signififcantly smaller than actual beam size
 - we use a fit to Gaussian or beam-beam equivalent to determine σ_x and σ_y

Collimation System Design

- Two systems have been studied (J. Resta Lopez)
 - a linear one
 - a non-linear one
- Cleaning inefficiency can be quite good
- Higher luminosity with linear system
- Need to re-evaluate collimation system with new parameters
- More detailed study of performance with imperfections appears useful
 - collimator wakefields are strong

Collimator Survial

- Collimator survival is on the edge (Be)
 - ⇒ need precise investigation of failure modes
- Potential remedies are
 - replaceable collimators
 - increase of betafunctions and system length
- non-linear collimation system (reduced luminosity)
- graphite collimators (but wakefields)

• Obviously LHC work is of interest

Muon Background

- Lost beam particles can generate secondary muons
 - Bethe-Heitler process (simulated)
 - production by photons in the shower
 - by hadronic processes
- Simulations performed with BDSIM (H. Burkhardt)
 - total muon rate expected to be twice larger
- Muons are hard to stop
- Potential means is use of tunnel fillers of magnetised iron
 - problems with tunnel access
 - high cost

Muon Rate

- Rate depends critically on assumption about beam halo
 - expect small values (some 10^{-4} for a vacuum pressure of $10\,\mathrm{ntorr}$, H. Burkhardt, needs more studies)
 - SLC experience has been bad (up to 0.01)
- \bullet For a beam halo of 10^{-3} we expect 5×10^4 muons per train in the detector
- Tunnel fillers can reduce this by an order of magnitude
- Better vacuum will help
 - beam stability requires very good vacuum
- But the detector will need to be able to cope with many muons
- Would follow ILC strategy
 - foresee place for tunnel fillers
 - but install them only if necessary

Post Collision Line Requirements

- Transport of beam with reasonable losses
 - no distruction of beam line elements
 - limited background
- Instrumentation is needed
 - No direct fast luminosity signal is available
 - Need such a signal for beam tuning
 - ⇒ Use signals to tune knobs (P. Eliasson, D.S.)
 - Good candidate is beamstrahlung

Post Collision Line Conceptual Design

- Post collision line is very challenging since beam energy spectrum goes down to almost zero energy
- Coherent pairs even lead to large flux of wrong sign of charge particles

- Design by A. Ferrari (Uppsala)
- Basic idea is to seperate wrong sign of charge coherent pairs, beamstrahlung and beam

Post Collision Line Conceptual Design 2

- Undisrupted beam size must be large at extraction window
 - litte impact of optices
 - ⇒ large distance to IP
 - C-type magnets to have $D'_y = 0$ at dump
 - huge quadrupoles with $\approx 2 \times 0.7 \, \mathrm{m}$ aperture

Post Collision Line and Extraction Window

- An instrumentated dump could even seperate coherent pairs according to energy
- but not all pair particles make it to the dump
 - lower energy particles are lost before

Beam Dump

- Distance to IP is $\approx 250\,\mathrm{m}$
- \bullet Beam power is 14 ${\rm MW}$
- Window is critical
 - suggested is carbon-carbon composite (SIGRABOND 1501G) with metal foil to make it leak tight
 - $15\,\mathrm{mm}$ carbon, $0.2\,\mathrm{mm}$ foil

Material	ρ (g/cm ³)	C (J/g K)	k (W/Kcm)	ΔT_{inst} (K)	ΔT _{eq} (K)
C-C	1.50	0.53	0.24	71156	103.5
Steel 316	7.80	0.50	0.16	1.0	639.8
Aluminium	2.70	0.90	2.37	0.6	17.4
Titanium	4.54	0.53	0.22	1.0	314.2
Copper	8.96	0.38	3.90	1.3	32.8

Tools we Use

Simulations

- GUINEA-PIG: can generate luminosity spectra, electromagnetic and hadronic background, polarization to be included
- HTGEN: development of modules to simulate generation of beam halo and tails
- BDSIM: to track beam halo and tails (GEANT based)
- PLACET: to simulate realistic beam conditions
- Data bases (need to be updated for latest parameters)
 - CALYPSO: Beam particle collisions with full correlation
 - HADES: Hadronic background events, uses PYTHIA for generation (maybe something to improve)
 - files with pairs

Conclusions

- CLIC interaction region studies need to be strengthened
- Rising interest at CERN
 - profit from LHC expertise
 - resources will appear slowly
- Would welcome contributions
 - can learn from LHC
 - can learn from ILC
 - and from others (e.g. crab cavity from KEK)