

Silicon Strip Sensor R&D and results from HPK sensor measurements

Thomas Bergauer HEPHY-Vienna

Outline:

- SiLC "Sensor Baseline"
- Status of companies
- Results from HPK

March 5th, 2008

SilC Silicon Sensor Baseline

SilC sensor baseline

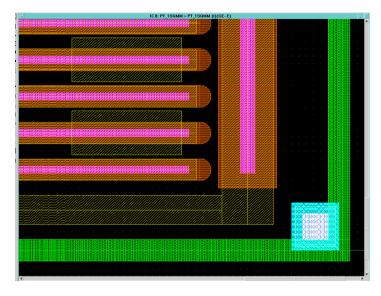
- FZ p-on-n sensors: n-bulk material, p+ implants for strips
- high resistivity (5-10 kOhm cm)
- Readout strip pitch of 50µm
 - Possibly intermediate strips in between (resulting 25µm pitch)
 - Smaller pitch becomes very complicated (Pitch adapter, bonding, charge sharing,...)
- Thickness around 100-300µm
 - mostly limited by readout chip capabilities (S/N ratio)
- Low current:<1nA per strip

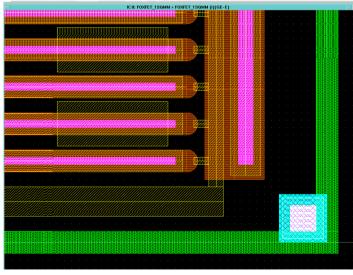
(Due to long integration time noise mostly defined by current and resistors)

Baseline for inner layers:

6" inch, Double sided, AC coupled

Baseline for outer layers:

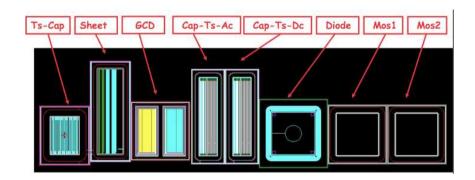

- 8" (12"?) inch, Single sided, Preferably DC coupled (cheaper)

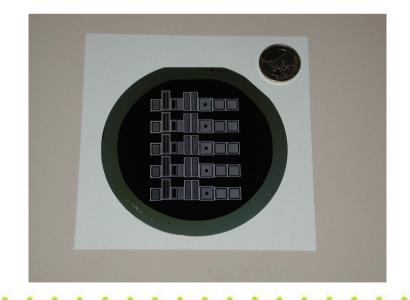


Sensor Baseline Details

Biasing Possibilities:

- bias resistor with poly-silicon (20 to 50 MOhm)
- punch-through (upper picture)
- or FOXFET biasing structure (lower picture)
 - Latter two have non-linear behavior
 - But are cheaper

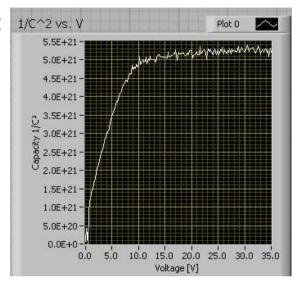


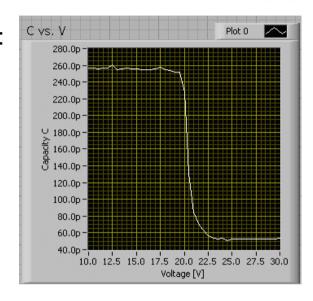


Status of the sensor producers

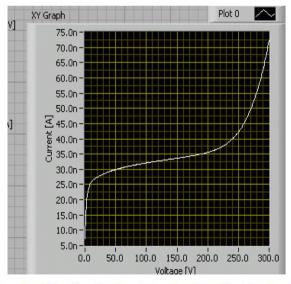
IET Warsaw

- Contact established with *Institute* for *Electron Technology* already three years ago
- They have experience with SOI and chip production, but not with fully depleted devices yet.
- Goal: develop test structures based on CMS 'half-moon', but improved
- Three 4" wafers received from first processing batch
- Results look promising





IET Warsaw Results


CV Diode: 1/c^2 vs. V

CV MOS:

IV:

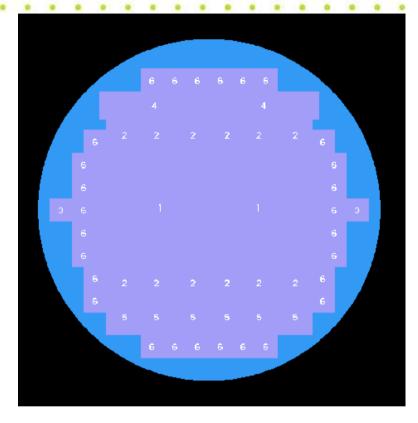
• CV Diode: V_{depletion}=8 V

• CV MOS: V_{flatband}=21V

• IV: I_{dark}@200V=35nA

Next step:

 Design and production of test structures for dual metal layer

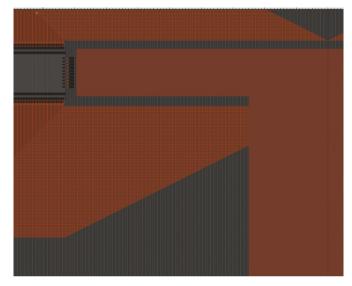


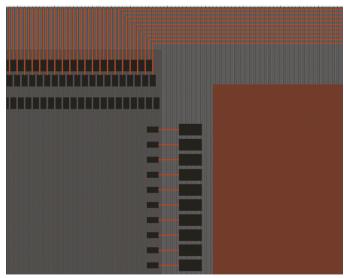
VTT (Finland)

- VTT is a large Finnish national research center
- Start of collaboration in December 2007 with goal to develop detectors

Status:

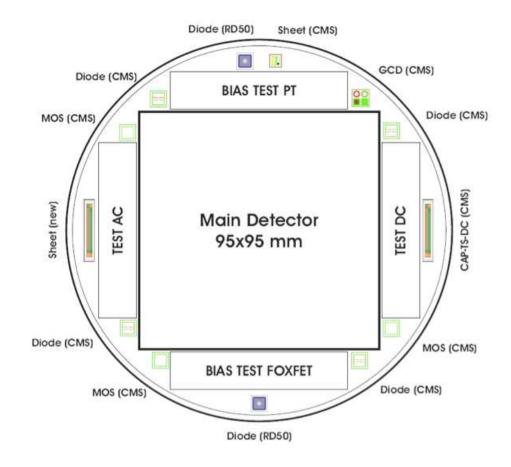
- Design ready
- Two main sensors on 4" wafer
 - One sensor DC coupled
 - Other AC coupled with FOXFET biasing
 - Vienna provided CMS-like test structures
- Processing ongoing
- We are waiting for the first wafers by end of the year
- See talk by Simo Eraenen (Torino SiLC meeting Dec 2008).




- 1. MAIN DETECTOR, 5 X 5 SQCM
- 2. MEDIPIX2, 1.5 X 1.5 SQCM
- 3. ALIGNMENT MARKS, 1 X 1 SQCM
- 4. HALF MOON TEST STRUCTURE
- 5. EDGELESS TEST STRUCTURES, 1.5 X 1.5 SQCM
- 6. BABY DETECTORS, 1 X 1 SQCM

ON Semiconductor

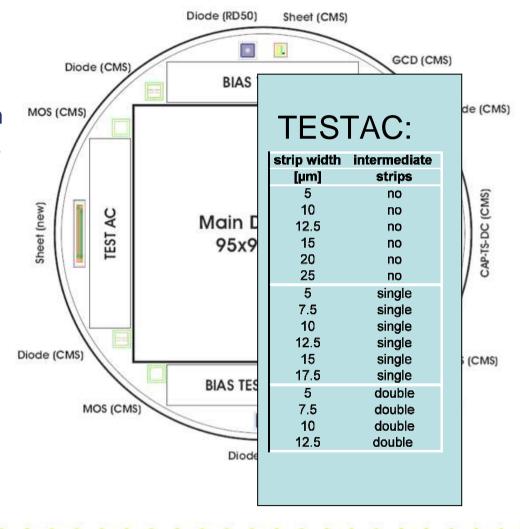
- Company located in Czech republic, former name "Tesla"
- High wafer throughput
 - 4" and 6" production line running
- Experience already with Delphi and Atlas Pixel detectors
- First contact established
- Agreement to design and build dual-metal-layer test structures detectors with them



Measurement results on new SilC HPK sensors

HPK Sensors Order (1)

- Single-sided AC coupled SSD
- Sensor size: 91,5 x 91,5 mm² (± 0,04 mm)
- Wafer thickness: approx. 320 μm
- Resistivity: such that depletion voltage: 50 V < Vdepl < 100 Volt
- **Leakage current**: < 10 µA per sensor
- **Biasing scheme**: poly-Silicon Resistor with 20 M Ω (± 5 M Ω)
- Number of strips: 1792 (= 14 x 128)
- **Strip pitch:** 50 um pitch, without intermediate strips
- Strip width: 12.5 um
- Dielectric Structure: Oxide (SiO₂) + Nitride (Si₃N₄) between p+ and aluminium strips.
- 2 **bond pads** on each side of the strip
- 1 **probe pad** on each side of the strip (contact to p+)



HPK Sensors Order (2)

Test structures:

- BIASTEST FOXFET and punchthrough
 - 128 channels with pitch=50um
 - with different biasing schemes
- TESTAC and TESTDC
 - 256 strips with pitch=50um
 - Multi-geometry test structures with different strip widths and different intermediate strips
 - Will be used to test coupling,C_int

HPK Sensor Order (3)

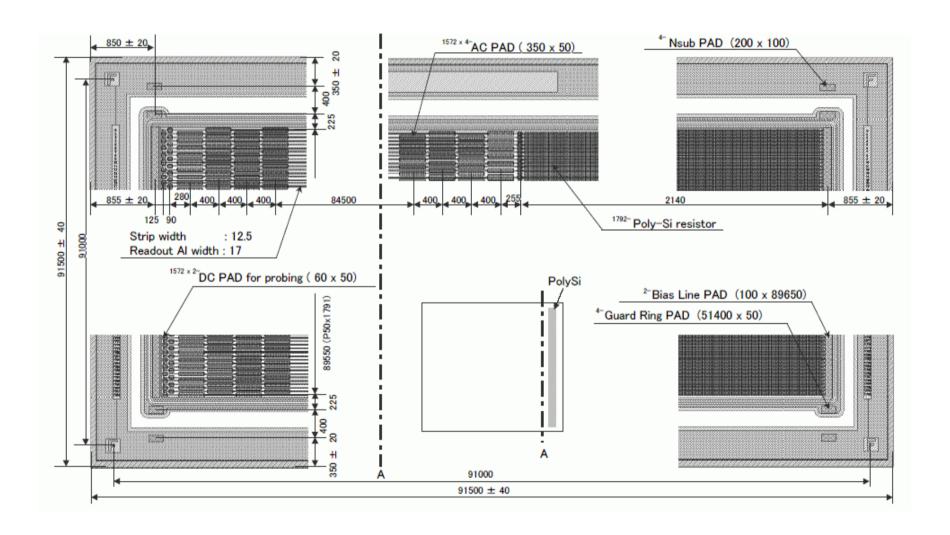
We ordered:

- 30 "normal sensors"
- 5 "alignment sensors"
- Plus all associated test structures

Timeline:

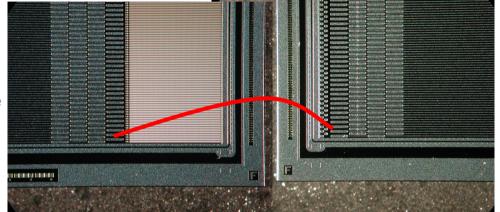
- 1st discussion with HPK during VCl'07 in Vienna (February)
- 12 July 2007: Design ready
- October 2007: Delivery

What we got so far:

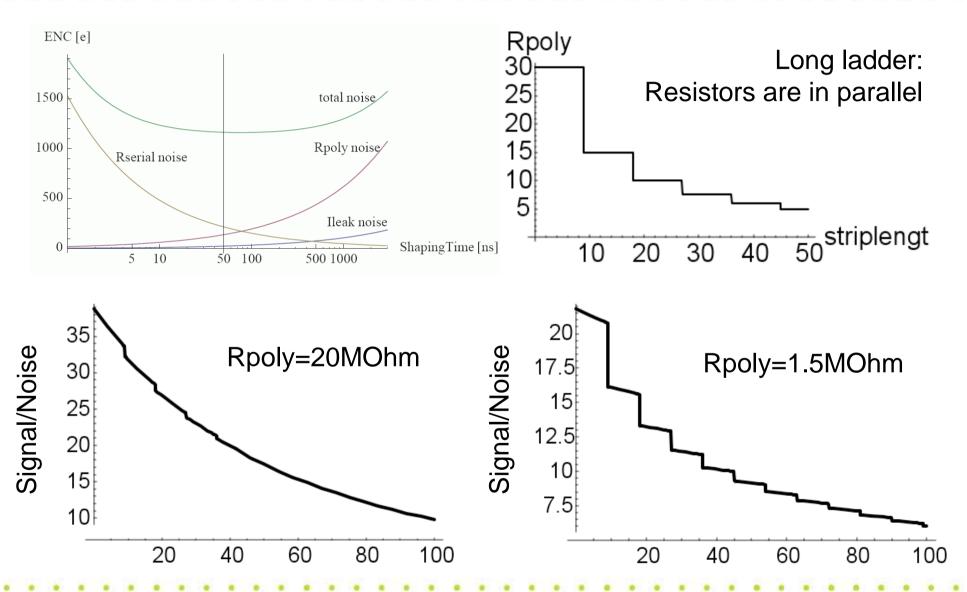

- 30 "normal sensor"
- 2 have been used for Testbeam in October

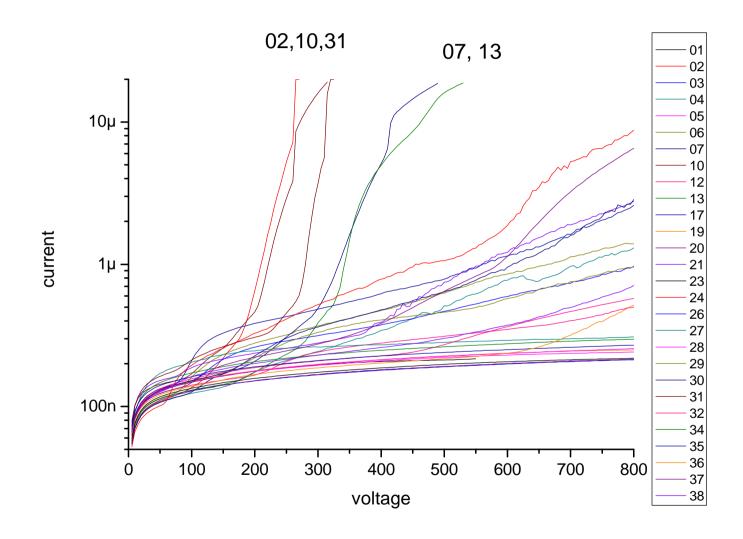
We tested:

- 28 sensors have been tested for IV and CV in Vienna,
- 10 have been shipped to Karlsruhe (IV, CV was repeated)
- Stripscan:
 - 1 sensor in Karlsruhe
 - 1 sensor in Vienna
- Strip Scan Parameters
 - strip leakage current l_{strip}
 - poly-silicon resistor R_{poly}
 - coupling capacitance C_{ac}
 - dielectric current I_{diel}


Main Sensor Layout for Reference

What we learned already: poly-Si


- Bonding problem for daisychained sensors
 - Because of the length of the poly-resistor the wire bonds connecting both sensors must be 5mm long (at 50um pitch)
- We did some bonding tests and this seems to be a problem.
 - Bonds bend and touch each other
- Flipped sensors
 - No alternative since "near" sensor needs to be bonded on both sides
- Other alternative: use punchthrough or FOXFEST biasing, since it requires less space (achievable resistor value still unclear)

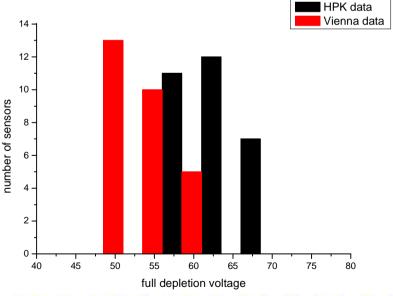


Noise considerations for different Resistors

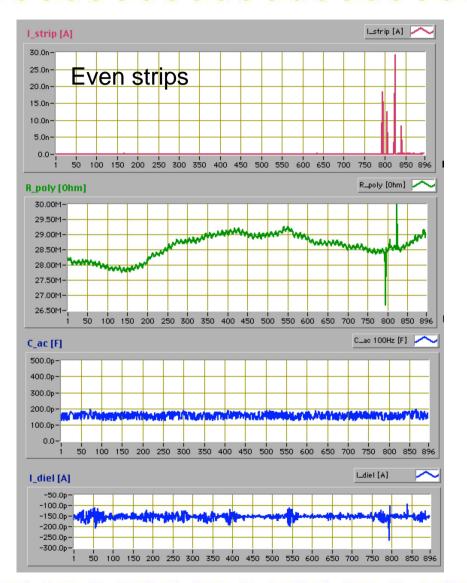
IV Results

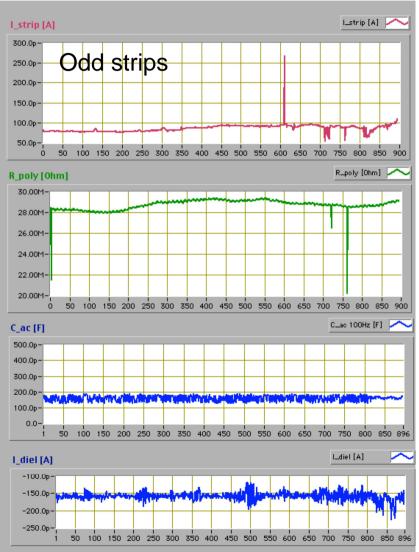
IV results for reference

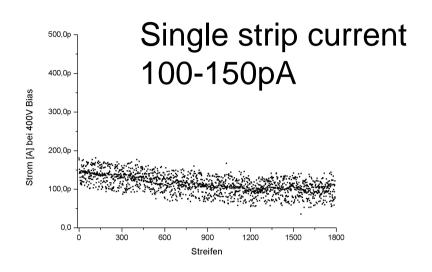

- IV tested up to 800V
- A large fraction of the sensors show some signs of breakthroughs
- Breakthroughs:
 - three sensors below 450V
 - one below 300V
- No problem at all, since operating voltage<100V
- However, CMS sensors were (slightly) better

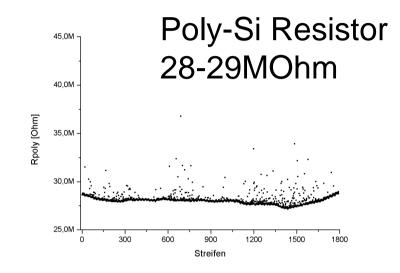

Object ID	Vdepl	I at 300V	I at 450V
ILC-6684-01	53	1.96E-07	2.10E-07
ILC-6684-02	50	xxxxxxxx	xxxxxxxxx
ILC-6684-03	47	1.67E-07	1.85E-07
ILC-6684-04	47	2.44E-07	4.12E-07
ILC-6684-05	53	1.95E-07	2.16E-07
ILC-6684-06	55	3.68E-07	5.41E-07
ILC-6684-07	53	4.91E-07	1.45E-05
ILC-6684-10	50	1.60E-05	xxxxxxxxx
ILC-6684-12	57	2.41E-07	2.95E-0
ILC-6684-13	55	3.87E-07	8.58E-0
ILC-6684-17	50	4.83E-07	6.97E-0
ILC-6684-19	50	1.98E-07	2.21E-0
ILC-6684-20	50	1.68E-07	1.87E-0
ILC-6684-21	55	2.79E-07	5.45E-0
ILC-6684-23	50	1.74E-07	1.93E-0
ILC-6684-24	55	5.20E-07	9.58E-0
ILC-6684-26	50	3.15E-07	4.15E-0
ILC-6684-27	55	2.62E-07	2.77E-0
ILC-6684-28	55	1.97E-07	2.20E-0
ILC-6684-29	57	3.33E-07	4.33E-0
ILC-6684-30	57	3.63E-07	5.55E-0
ILC-6684-31	50	3.69E-06	xxxxxxxxx
ILC-6684-32	47	2.09E-07	2.41E-0
ILC-6684-34	58	2.30E-07	2.56E-0
ILC-6684-35	55	2.10E-07	2.34E-0
ILC-6684-36	50	1.87E-07	2.09E-0
ILC-6684-37	50	2.75E-07	4.96E-0
ILC-6684-38	56	2.30E-07	2.77E-0

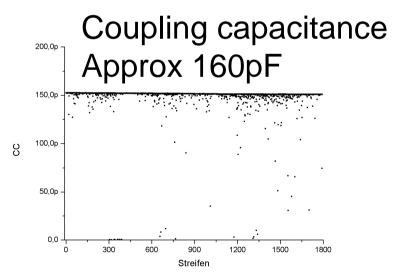
CV Results

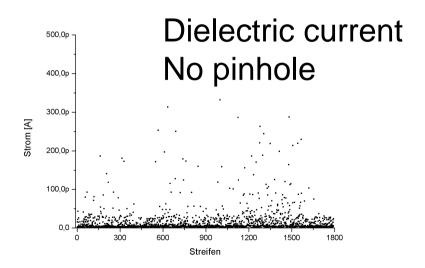

- We requested a resistivity such that depletion voltage is between 50 and 100V
- All sensors fully deplete between 47-58V, average at 52.5V
 - Resistivity is 6.7 kOhmcm (rough estimate since more exact measurement on TS diode possible)
 - Safe operating voltage: 70-90V



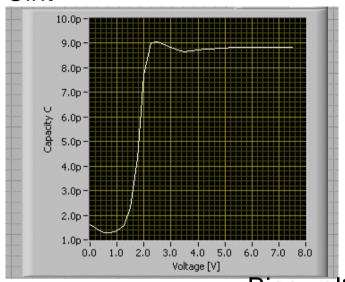

Strip Scan Results (Vienna)







Strip Scan Results (Karlsruhe)


Strip Scan Results (3)

- Measurements exactly identically between Karlsruhe and Vienna
- I_strip = 137 pA
- R_poly = 28.65 MOhm
- C_ac = 156 pF
- I_diel< 160 pA
- Coupling Capacitance (C_ac)
 - SiLC: 1.42 pF/cm/um (on sensor)
 - CMS: 1.74 pF/cm/um (on TS)

(from Sensor measurement oxide is 25% thicker than CMS; questionable to compare)

- Interstrip Capacitance
 - SilC: 0.94pF/cm
 - CMS: 0.84pf/cm
 - Larger because of narrower strips

Cint

Bias voltage

Proposal for a beam test

Proposal for a beam test

- TESTAC and TESTDC structures have
 - 256 strips with pitch=50um
 - Multi-geometry test structures with different strip widths and different intermediate strips
 - Could be used to test resolution in a testbeam
- What we need:
 - Beam time at SPS for 1 week
 - Has been requested for June 2008
 - Has been approved by SPSC May 30 to June4
 - EUDET Pixel Telescope + TLU Box
 - APV front end hybrid + 2 APV25 chips (available in Vienna)
 - APV readout system (available in Vienna)
- What we will learn
 - Which geometry is the ideal to reach best resolution

Summary/Outlook

- Sensor Producers
 - IET Warsaw: 1st wafers OK, 2nd iteration about to start; VTT: no news
 - ON Semi: collaboration just started, see next Talk
- Hamamatsu Results
 - Sensor electrically OK; as expected
 - Geometric problem with poly-Si resistor (too large to bond)
 - Test structures (and alignment sensors) still missing
- Vendor qualification procedure
 - HPK successfully qualified once all measurements finished
 - Other vendors have to comply with the same procedure
 - New vendors have to undergo the same procedure
 - At least one iteration of sample batch
 - Preproduction
 - Final production
- Once HPK test structures are available
 - In-depth measurements possible
 - Beam test at SPS testing resolution of different geometries

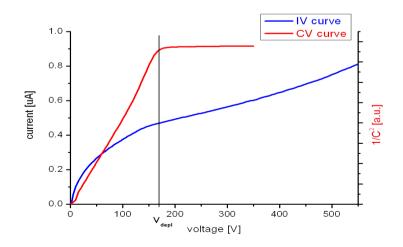
End.

Thanks for your attention.

SilC work program for sensor R&D

- Step 1 (2007)
 - Use long strips (50 µm pitch)
 - Wafer thinning (100, 200, 300µm)
 - Test new readout chips (DC coupling, power cycling)
 - Improve standardized test structures and test setups
- Step 2a (2008-)
 - Move from pitch adapter to in-sensor-routing
 - Test crosstalk, capacitive load of those sensors
- Step 2b (2008-)
 - Test 6" double sided sensors
- Step 2c (2008-)
 - 8" (12") single sided DC wafer

Step 1 and 2a:


- Bump-bondable 128-channel chip available end 2007
- HPK agreed to provide a sensor design
- SiLC adapts strip to pad area
- HPK will process the sensor
- SiLC (Paris) provides chip
- HPK could bump bond chip to sensor
 - HPK is very interested to strengthen inhouse bumpbonding
 - In Bump
 - Flipchip
 - Stud-bonding (Jean-Francois)
- Testing begins 2008

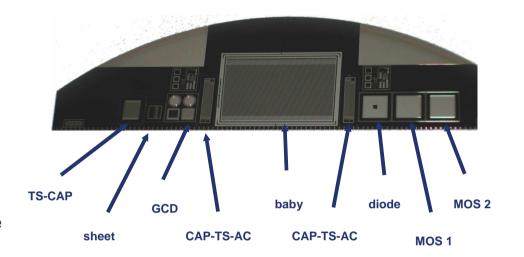
Strip-by-Strip Characterization

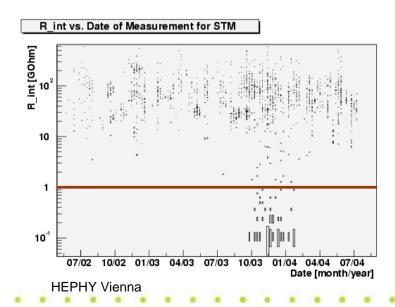
What do we test?

- Global parameters:
 - IV-Curve: Dark current,
 Breakthrough
 - CV-Curve: Depletion voltage, Total Capacitance
- Strip Parameters e.g.
 - strip leakage current I_{strip}
 - poly-silicon resistor R_{poly}
 - coupling capacitance C_{ac}
 - dielectric current I_{diel}

Strip-by-strip Test Setup

- Sensor in Light-tight Box
- Vacuum support jig is carrying the sensor
 - Mounted on freely movable table in X, Y and Z
- Cold chuck in Karlsruhe available
- Needles to contact sensor bias line
 - fixed relative to sensor
- Needles to contact:
 - DC pad (p+ implant)
 - AC pad (Metal layer)
 - Can contact ever single strip while table with sensor is moving





Process Monitoring on Test Structures

CMS "Standard Half moon"

- 9 different structures
- Use to determine one parameter per structure
- Worked extremely well during CMS sensor production
 - Example of an identified problem can be seen in plot: low interstrip resistance
- Improved version for SiLC
 - overall size reduction
 - Structure design improvements (e.g.better sheet structure)

Test Structures Description

TS-CAP:

- Coupling capacitance C_{AC} to determine oxide thickness
- IV-Curve: breakthrough voltage of oxide

Sheet:

- Aluminium resistivity
- p+-impant resistivity
- Polysilicon resistivity

GCD:

- Gate Controlled Diode
- IV-Curve to determine surface ${\rm current}\ {\rm I}_{\rm surface}$
- Characterize Si-SiO₂ interface

CAP-TS-AC:

Inter-strip capacitance C_{int}

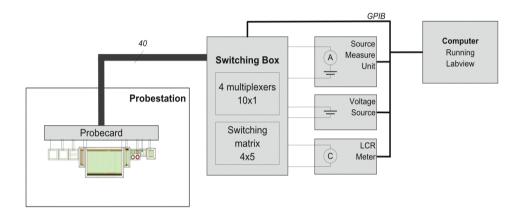
Baby-Sensor:

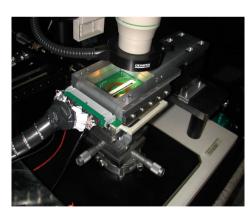
- IV-Curve for dark current
- Breakthrough

CAP-TS-DC:

Inter-strip Resistance R_{int}

Diode:


- CV-Curve to determine depletion voltage V_{depletion} Calculate resistivity of silicon bulk


MOS:

- CV-Curve to extract flatband voltage $V_{\mbox{\scriptsize flatband}}$ to characterize fixed oxide charges
- For thick interstrip oxide (MOS1)
- For thin readout oxide (MOS2)

Test structures Measurement Setup

- Probe-card with 40 needles contacts all pads of test structures in parallel
 - Half moon fixed by vacuum
 - Micropositioner used for Alignment
 - In light-tight box with humidity and temperature control
- Instruments
 - Source Measurement Unit (SMU)
 - Voltage Source
 - LCR-Meter (Capacitance)
- Heart of the system: Crosspoint switching box, used to switch instruments to different needles
- Labview and GPIB used to control instruments and switching system

