

Project Management Report

Marc Ross <u>Nick Walker</u> Akira Yamamoto

TILC08 GDE Meeting – Tohoku University – Sendai, Japan 3rd March 2008

ic

Contents

- US/UK funding problems
- EDR to TDR: a new strategy
- Primary focus: plans for SRF
- Other Priorities for the Technical Design Phase
- Cost Reduction
- Site Studies
- ILC-CLIC
- Workshop Working Groups
- Future Meetings & Workshops

"Black December"

"Both the UK and US actions are programmatic budget cuts and not rejections of the scientific goals and priorities that have motivated our work toward a linear collider." -BB

Resource Situation

- US
 - 2008 budget (15M\$) almost completely spent in first ¼
 - FY 2009 President's budget 35 M\$ ③
 - Plus 25 M\$ for FNAL SCRF infrastructure
- UK:
 - Draconian statements on ILC support.
 - Any UK participation will now be only via "generic accelerator R&D".
 - Not expected to change in the next few years.
 - UK leadership hopefully to be maintained ③
- Rest of the World: Essentially Unchanged ③

ILC-Specific Resources (R&D Plan)

GDE Director Response:

THE SCIENCE !!!

<u>Nothing has changed</u>. A linear collider remains the consensus choice as the highest priority long term investment for particle physics

Global Collaboration Response

- Strong response urging us to forge ahead and find ways to help or replace US and UK efforts.
- Global commitment to the GDE Common Fund (*new*: Spain)
- Offers of visiting appointments, equipment help, travel help, etc
- Note the value of multilateral program! Can survive problems in parts of the consortium.

GDE Director Response:

THE SCIENCE !!!

 <u>Nothing has changed</u>. A linear collider remains the consensus choice as the highest priority long term investment for particle physics

Global Collaboration Response

- Strong response urging us to forge ahead and find ways to help or replace US and UK efforts.
- Global commitment to the GDE Common Fund (*new*: Spain)
- Offers of visiting appointments, equipment help, travel help, etc

 Note the value of multilateral program! Can survive problems in parts of the consortium. Global Design Effort

The ILC Engineering Design Phase

Technical The ILC Engineering Design Phase

ED Phase Plan

ED Phase R&D Plan

- R&D Plan needs revision to reflect loss of resources
- Project Management has reassessed scope of ED phase and proposed amended plan to EC
- Basic approach:
 - Keep some critical (priority) goals for 2010
 - Delay others until 2012
- Updated report due shortly after this workshop

The (Original) Plan (in a nut shell)

- High Gradient R&D (reproducible 35 MV/m) →S0
- Cryomodule designs (plug compatibility)
- SCRF tech/Infrastructure in all three regions
 - FNAL/KEK ramping up
 - DESY/Europe has XFEL
- Where we intend to reduce the \$\$\$\$!!
- CFS-driven schedule for Accelerator Systems
- VALUE engineering process to reduce the cost.
- Cost/performance studies
- Supplying necessary information to CFS
- Test facilities (ATF, ATF-2, CESR-TA,...)

Global Design Effort

CFS

AS

SCRF

Re-Structuring / Re-Planning

- Basic road-map now exists
 - Presented to and <u>endorsed by</u> FALC 18th January
- Basic "ED-phase" priorities remain the same
 - Gradient \rightarrow **S0**
 - High-gradient cryomodule \rightarrow S1
 - Cost reduction (CFS focus)
 - Test facilities (critical R&D \rightarrow *electron cloud*)
 - "Plug Compatible" Cryomodule design
- Response to funding reduction
 - Keep priority R&D (risk mitigating) goals for 2010
 - Many final engineering activities delayed until 2012
 - Including complete new VALUE estimate
 - Including Project Implementation Plan

Technical Phase Roadmap

Technical Phase I Roadmap

Technical Phase II Roadmap

İİĹ

- Development of "plug compatible" linac components considered critical for global mass-production models
- XFEL (European) planned CM mass-production (in-kind contribution scheme).

Re-plan of ILC-SCRF R&D proposed

• TDP1 by 2010:

- S0: achieve 35 MV/m with 9-cell cavities at the yield 50 % under well defined processing-base,
- S1-Global: achieve <31.5 MV/m> with cryomodule-assembly
 - with global contribution (i.e., 4-AS, 2-US, 2-EU).
 - Note: the S1 achievable also, if 3 Tesla-type cavities additionally assembled with existing 5 cavities in CM2 at Fermilab.

Re-plan of ILC-SCRF R&D proposed

• TDP1 by 2010:

- S0: achieve 35 MV/m with 9-cell cavities at the yield 50 % under well defined processing-base,
- S1-Global: achieve <31.5 MV/m> with cryomodule-assembly
 - with global contribution (i.e., 4-AS, 2-US, 2-EU).
 - Note: the S1 achievable also, if 3 Tesla-type cavities additionally assembled with existing 5 cavities in CM2 at Fermilab.
- TDP2-by 2012:
 - S0: achieve 35 MV/m with 9-cell cavities at the yield 90 % under well defined processing-base.
 - S1: achieve <31.5 MV/m> with full cavity-assembly (similarly processed) in single cryomodule, CM3 or CM4 (at Fermilab)
 - S2: achieved <31.5 MV/m> with 3 cryomodule assembly to be powered by 1 RF unit, and with beam acceleration, in STF-2 at KEK.

Global SCRF Plan proposed

		C١	608	CY		CY10		CY12
EDR	TDP1		TDP-II					
S0: Cavity Gradient (MV/m)	30							35 (>90%)
KEK-STF-0.5a: 1 Tesla-like								
KEK-STF-0.5b: 1 LL								
KEK-STF1: 4 cavities								
S1-Global (AS-US-EU) 1 CM (4+2+2 cavities)				См (4 _{AS} +2 _{US} +2 _{EU}) <31.5 MV/m>				
S2 & STF2: One RF unit & 3 CM with beam		des	sign	Fabrication in industries		Assembled a STF		and test at
S1-Fermilab/US ILC-CM-3 or -4		(CM1	CM2 CM3(Type-IV)		CM4		

ic

SCRF R&D Plan at Fermilab

from P5 talk by S. Holmes

• 101 cryomodules

808 cavities

İİĹ

Installation of the Tesla-like Cavities, Feb. 27, 2007

Table 5.1: Projected number of superconducting RF cavities available in each region and the number of planned tests for the TD Phase (TDP1 is 2004 to mid-2010), and up to 2012.

Americas	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10	TOTAL TDP1	FY11	FY12
Cavity orders	22	12	0	10	10	52	10	10
Total 'process and test' cycles		40	5	30	30	9 8	30	30
Asia	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10		FY11	FY12
Cavity orders	8	7	15	25	15	59	39	39
Total 'process and test' cycles		21	45	75	45	152	117	117
Europe	2004-06 (actual)	2007 (actual)	2008	2009	2010		2011	2012
Cavity orders	60*			838		8 9 8		
Total 'process and test' cycles		14	15	30	100	109	354	354
Global totals								
Global totals - cavity fabrication	90	19	15	873	25	1008	49	49
Global totals - cavity tests	0	75	65	135	175	359	501	501

* Thirty European cavities were ordered in 2004.

From 2006 to 2012 with milestone at end of TDP I

Table 5.1: Projected number of superconducting RF cavities available in each region and the number of planned tests for the TD Phase (TDP1 is 2004 to mid-2010), and up to 2012.

Americas	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10	TOTAL TDP1	FY11	FY12
Cavity orders	22	12	0	10	10	52	10	10
Total 'process and test' cycles		40	5	30	30	9 8	30	30
Asia	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10		FY11	FY12
Cavity orders	Q	7	15	25	15	59	39	39
Total 'process and test' cycles	Po	duct	ion	45	152	117	117	
Europe		uuuu		U	2010		2011	2012
Cavity orders	~1	30 7	les	IS		8 9 8		
Total 'process and test' cycles					100	109	354	354
Global totals					Δ			
Global totals - cavity fabrication	90	19	15	873	25	1008	49	49
Global totals - cavity tests	0	75	65	135	175	359	501	501

* Thirty European cavities were ordered in 2004.

From 2006 to 2012 with milestone at end of TDP I

ilc.

S0 Recent Highlights

- January TTC meeting "Beyond Field Emission"
- Ethanol / detergent rinse results
 - Significantly reduced FE
 - "classical" quench now limiting factor
- Redirection of S0
 - Understanding quench location
 - T-mapping essential
 - Optical inspection techniques
 - Major breakthrough with Kyoto/KEK high-res camera
- Reduction in gradient spread remains primary issue
 - But emphasis has shifted
- The "end of field-emission" ?

 \rightarrow See presentation by H.Hayano

Progress in ICHIRO-#5 S0 Studies at Jlab

in cooperation with FNAL and KEK

A Technology Recently Developed Kyoto/KEK Surface Inspection System:

An End to Field Emission?

I'll Be Back!

IC DESY Cryomodule Performance

Cryomodule R&D Strategy

Twofold:

- 1. Devise a cost model and construction plan based on a globally-unified design
 - Develop and test the model
 - Industrialization realized and demonstrated by XFEL
- 2. Aggressively promote cost savings / performance improvements
 - Specify interface between 6 basic components PLUG
 - Provide test facilities

•	CM with 6 modular sub-assemblies	Cost fraction
	 Cavity unit (cavity + helium vessel + tuner) 	64%
	 Coupler 	12%
	 Quad package (quad + corrector) 	4%
	- BPM	2%
	 Cold-mass (cold-piping) 	x/19%
	 Vacuum vessel 	y/19%
•	Plug-compatible, Interface specifications (IS) – To be fixed at Fermilab meeting, in April, 2008	3
•	Plug-compatible IS enables parallel developme single goal	ent toward a

9 mA Beam Tests at TTF2/FLASH

 2 weeks in March 2009

İİĹ

- Full beam-loading
 - 2400 bunches
 - 3.2nC bunches
 - 800 us pulse
 - ~1 GeV beam energy
- Close to "highgradient" limits
 - Extended test period
- Effectively a LLRF test

Global Design Effort

- RF Power Source
 R&D
- Electron-Cloud
 Mitigation R&D
- ATF-2
- Cost Reduction

RF Power Source
 R&D

ilr

İİĻ

• ATF-2

Electron-Cloud
 Mitigation R&D

R&D into alternatives to current RDR baseline (SLAC)

Cost Reduction

- RF Power Source
 R&D
- Electron-Cloud
 Mitigation R&D

A world-wide effort!

"Test Facilities"

KEK-B

PEP-II

DELPHI

Large Theoretical Effort (many institutes)

Cost Reduction

• ATF-2

- RF Power Source
 R&D
- Electron-Cloud
 Mitigation R&D

• ATF-2

İİĹ

Cost Reduction

- FFS optics demonstration
- Stabilisation of "nanobeams"
- Instrumentation development
- International Collaboration

- RF Power Source
 R&D
- Electron-Cloud
 Mitigation R&D
- ATF-2
- Cost Reduction

- **CFS** still considered primary target for cost reduction
- Original plans for <u>VALUE</u>
 <u>ENGINEERING</u> across all subsystems now delayed
- TDP-1 Focus of VE activity will be MAIN LINAC and IR Hall
 - Potentially BDS
- Production of <u>CFS Criteria Tables</u> is still a needed (look for resources)

more later...

Technical Milestones in CY 2008

- Despite US/UK funding situation, important to show progress in 2008 where possible
- STF-1

NJW1

- 4-cavity cryomodule (with TESLA shaped cavities)
- (additional 4-cavity CM with Ichiro under discussion)
- ATF-2
 - first beam
- CESR-TA
 - Tests of EC growth in vacuum chambers at 2-2.5 GeV. Characterize growth as a function of bunch spacing, intensity, train configuration, emittance.
 - Continue beam-based alignment program to achieve ultra low emittance
 - Experiments at low emittance to explore instability thresholds and emittance dilution due to the ECI and FII
- Others
 - Damping ring baseline engineering lattice (← this workshop)
 - e+ source target and undulator prototypes
 - And, and, and....

NJW1 Can't be an exhaustive list, but are there other things we can mention here? Nicholas Walker, 2/29/2008

Plan View of the 500 GeV Machine

- Stated Priority TD Phase Goal
- Primary focus: CFS via
 - Better-defined requirements
 - From Accelerator Designers
 - From Technical System engineers
 - VALUE ENGINEERING
- Basic premise:
 - RDR design is "sound"
 - CFS design is conservative

What we must do

(*indirect* performance)

What we must do

What we must do

redundancy, ... (*indirect* performance) Physics "figure of Merit" (*direct* performance)

Minimum cost machine Understand the performance derivatives

Cost Reduction: A Strategy

- Required VE resources will be very limited in 2008
 - Expect primary effort to begin end 2008
- Use time to take a fresh look at RDR design
 - Perform design/performance iterations that were not completed in RDR phase
- Approach
 - Continue "cost reduction" exercise begun after Vancouver '06 Workshop
 - Review proposals that where rejected (at that time)
 - Request new / innovative ideas for further reduction
- Begin the process at this workshop (WG-1)
- Make plans for detailed studies over next months to one-year.
 - Reports at LCWS (Nov 08)

Primary Cost-Reduction Categories

- 1. Estimate Capitol Cost Saving
 - Is this a cost reduction at all?
- 2. Direct physics parameter Impact
 - Initial capability
 - Maximum Reach
- 3. Staging \rightarrow SG-1
 - Can impact be later mitigated with an "upgrade"?
- 4. Risk impact
 - on reaching nominal performance
- 5. Scope of proposed modification
 - Major layout change to plug-compatible component change
- 6. Technical systems overhead
- 7. Impact on operations
- 8. Machine reliability
- 9. Scope of necessary R&D programme
- 10. Impact on TD phase planning
- 11. Impact on construction schedule
- 12. Site dependency issues
- 13. Initial study effort (primary required resources)

Global Design Effort

In the form of questions to be quantified (where applicable)

An Open and Transparent Process

- Post-Vancouver cost reduction exercise was very much a "select group" activity
 - Mandated by RDR deadlines
 - note: many RDR changes did not formally undergo change control
- Current studies will be (hopefully)
 - Better focused
 - Better organised
 - Longer time-scale (several months \rightarrow year)
- Active group(s) will remain small and focused, but we must let broader community know what we are doing
 Canvas Feedback
- Involve / inform HEP community for critical physics parameter impact studies
 - Barry's joint-plenary talk

Cost Reduction is Not Easy!

- Goal: I want to reduce RDR value by 20%
 - Approx: 1.3 BILCU
- Easy way:
 - Reduce length of main linacs by 40% and therefore the $\rm E_{cm}$ to 300 GeV
- Hard way:
 - Find 20×1% effects or 40×0.5% effects or 200×0.1% effects
- The "Hard Way" is clearly more desirable
 - Every %-level amount will count!

Site Studies

- (Also a cost-reduction study)
- Shallow site
 - Cut and cover + klystron gallery
 - Shallow tunnel + klystron gallery
- Single-tunnel (XFEL-like) options
 - An engineered / construction solution
 - We get this (almost) for free.
- Focus of JINR (Dubna) GDE Meeting (06.08)
 - JINR shallow-site studies
 - CERN (CLIC-ILC) collaboration

Formally part of ILC-HIGRADE (European) programme

CLIC and the ILC (1)

- Necessary to bring two linear collider communities together
- A sharing of resources in a common framework.
 - Many common features despite obvious differences
- First discussions on initial identified themes at CERN (7-8.02)
 - CFS
 - BDS & MDI
 - Cost & Schedule
 - Detectors
- Slow start, but PMs (and CLIC management) generally pleased
 - JINR GDE Meeting (June); CLIC Collab. Meeting (October)
 - resolved to aggressively pursue this new collaborative effort.

CLIC and the ILC (2)

- ILC agenda:
 - looking for CFS, planning & scheduling resources from CERN
 - Other: cryogenics, SPL, (not CLIC, not discussed)
- CLIC agenda:
 - GDE engagement in CLIC (the machine) design issues
 - Comparable cost basis for 500GeV CM machine
- ILC-CLIC machine technical discussions positive
 - Expectations on both sides high but
 - Reality is (available) resources on both sides are constrained
 - Slow start still understanding the details
 - Key people are talking to each other!

This Workshop

- WG-1 Cost Reduction \rightarrow presentation by W. Bialowons Studies
- WG-2 SRF Main Linac \rightarrow presentation by H. Hayano Technology
- WG-3 BDS/MDI
 - » IR integration
 - » ATF-2
 - » (CLIC)
- WG-4 Damping Rings
 - » Baseline "engineering" lattice
 - » CESR-TA & ATF programmes (e-cloud)

Focused on critical TDP 1 priorities

Future Meetings

- April 7-8 DESY Zeuthen
 - Positron source meeting
- April 21-25 FNAL
 - SRF Main Linac Technology Review
- June 4-6 JINR (Dubna)
 - GDE Meeting: ILC CFS Workshop
- July 7-11 Cornell
 - Damping Ring Workshop (CESR-TA)
- November 16-20 Chicago
 - LCWS / GDE Workshop

Planning for these

GDE Meetings starts

- April 7-8 DESY Zeuthen
 Positron source meeting
- April 21-25 FNAL
 SRF Main Linac Technology Review
- June 4-6 JINR (Dubna)
 - GDE Meeting: ILC CFS Workshop
- July 7-11 Cornell
 - Damping Ring Workshop (CESR-TA)
- November 16-20 Chicago
 LCWS / GDE Workshop

Last-but-one Slide

- "Black December" will remain a low-point in our endeavours
 - We look (hope!) for better future times in US and UK
- Despite problems, progress is being made
 - Rapid re-structuring of GDE plans
 - Significant progress on all fronts (esp. SRF)
- We must now be forward-looking
 - Build on the long-standing enthusiasm of the collaboration which remains our anchor
 - Impressed by contributions despite (or perhaps in spite) of funding crisis

Last Slide

- PMs primary challenge: resources!
 - A global search.
 - On-going negotiations with institutional management
 - Continually looking for "mutual benefit"
- Project Management is 100% committed to a successful outcome of the TD phase programme

But we cannot achieve anything with your support

Thank you for your attention