

Damping Rings Working Group 4 Summary

Mark Palmer ILC Damping Rings Group

March 7, 2008 TILC08 **Global Design Effort**

- Baseline Lattice Evaluation Tuesday Morning
 - **OCS8**
 - FODO4 ⇒ FODO5
 - DCO
- ATF Status and Plans Tuesday Afternoon
- CesrTA Discussion Wednesday Morning
- Electron Cloud Status Reports Wednesday Afternoon
- Closeout

Baseline Lattice Evaluation

- The Damping Rings Group stated goal was to settle on a baseline lattice prior to this meeting
- Recent events have conspired to make this a difficult task
 - Loss of key design support for remainder of FY08
 - Incorporating slightly modified requirements
- Discussions at the Damping Rings Workshop held at KEK in December resulted in:
 - A relaxed momentum compaction requirement
 - The possibility of returning to a 6mm bunch length design without excessive RF requirements

Updated Baseline Lattice Parameters

Main Parameters

_							
			EDR				
	KDK [1]	low rf	nominal	high threshold	d		
Beam energy	5 GeV	5 GeV					
Harmonic number	14516	14042					
RF frequency	650 MHz	650 MHz					
RF voltage ¹	22.1 MV	13.2 MV	21.6 MV	25.8 MV	MV		
Number of rf cavities	18	8	16	16			
Momentum compaction factor ¹	4×10 ⁻⁴	1.1×10^{-4}	(1.8×10^{-4})	2.7×10^{-4}			
Natural rms bunch length ¹	9 mm	6.6 mm	6.6 mm 6.6 m				
Natural energy spread	0.13%	< 0.13%					
Natural emittance	5 µm						
Transverse damping times	25 ms	< 25 ms					
Betatron acceptance $(A_x + A_y)$	> 0.01 m	> 0.01 m					
Energy acceptance	± 0.5%		± 0.5%				

Table 1: Main parameters of the baseline lattice for the RDR and proposed for the EDR.

¹ These parameters should be variable over some range see Table 2.

² Can be reduced to 6 mm with 30.8 MV total rf voltage (18 cavities): see Table 2.

Updated target (previously 4×10^{-4})

Max. value for bunch compressors

DCO at a glance

- Arcs consist of a total of 192 FODO cells
- Flexibility in tuning momentum compaction factor, given by phase advance per arc cell:
 - 72° phase advance: $\alpha_p=2.8\times10^{-4}$
 - 90° phase advance: $\alpha_p = 1.7 \times 10^{-4}$
 - 100° phase advance: $\alpha_p = 1.3 \times 10^{-4}$
- No changes in dipole strengths needed for different working points.
 - Racetrack structure has two similar straights containing:
 - injection and extraction in opposite straights
 - phase trombones
 - circumference chicanes
 - rf cavities
 - "doglegs" to separate wiggler from rf and other systems
 - wiggler

İİĹ

Global Design Effort

Parameter Comparisons

	OCS8 FODO4		FODO5								
Beam energy (GeV)	5.00										
Circumference (m)	6476.440										
RF frequency (MHz)	650										
Harmonic number	14042										
Number of straight sections	8		4			8		2			
Arc cell type	TME		FODO			FODO			FODO		
Arc cell length (m)	38.9		29.4			28.4			21.0		
Number of arc cells	128		184			188			192		
Number of dipoles per arc cell	1		2			2			1		
Arc dipole length (m)	6		2			2			2		
Arc dipole field (T)	0.146	6 0.142		0.139			0.273				
Number of quadrupoles per arc cell	4	2		2			2				
Number of sextupoles per arc cell	4		2		2			2			
Natural rms bunch length (mm)	9.00		9.00		6.00			6.00			
Natural energy spread (10 ⁻)	1.28		1.28		1.28		1.27				
Transverse damping time (ms)	25		25		25		21				
Approximate phase advance per cell	90	60	72	90	72	90	108	72	90	100	
Momentum compaction factor (10 ⁻⁴)	4.0	6.0	4.0	2.0	4.00	2.5	1.7	2.8	1.7	1.3	
Normalised natural emittance (m)	5.2	5.4	4.2	3.4	3.9	3.1	2.6	6.5	4.7	4.3	
RF voltage (MV)	21.2	31	22	15	45	29	21	32	21	17	
RF acceptance (%)	1.46	1.65	1.48	1.21	2.70	2.45	2.17	2.35	1.99	1.72	
Synchrotron tune	0.059	0.091	0.061	0.038	0.089	0.056	0.037	0.061	0.038	0.028	
Horizontal tune	49.23	40.29	46.28	58.29	50.30	61.30	72.28	64.75	75.20	80.45	
Natural horizontal chromaticity	-64	-48	-54	-74	-63	-79	-108	-77	-95	-107	
Vertical tune	53.34	41.25	47.24	57.25	51.26	62.24	69.23	61.40	71.40	75.90	
Natural vertical chromaticity	-64	-49	-55	-73	-63	-80	-100	-76	-93	-104	
March 7, 2008 TILC08	Globa	I Des	ian F	ffort						7	

Lattice Evaluation

- The 4 lattices were evaluated on 8 criteria:
 - Lattice Design and Dynamical Properties
 - Conventional Facilities and Layout
 - Magnets, Supports and Power Supplies
 - Vacuum System and Radiation Handling
 - RF System
 - Injection and Extraction Systems
 - Instrumentation and Diagnostics
 - Control System, Availability and Reliability
- Rankings of 1-5 in each (5 is best)
- Where insufficient data for evaluations

Rankings

	OCS8	FODO4	FODO5	DCO
Net Score	27.0	27.2	28.4	29.3

- Tight clustering due to the fact that core work on all lattices at similar level
- Differences were driven by whether lower momentum compaction/shorter bunch length option was incorporated and items that affect cost, availability and reliability (eg, magnet counts, degree of clustering of major components near the two proposed access shafts, etc)

- Baseline Recommendation: DCO
- Alternative Recommendation: FODO5
- Many thanks to the design groups for their thorough work:
 - OCS
 - Aimin Xiao & Louis Emery (ANL-APS)
 - FODO
 - Yi-Peng Sun (now at CERN), Jie Gao (IHEP), Zhi-Yu Guo (Peking Univ.), and Wei-Shi Wan (LBNL)

– DCO Designers

• Andy Wolski & Maxim Korostolev (Univ. of Liverpool, CI)

ATF Session

- Low Emittance Tuning
 - Kiyoshi Kubo
- Fast Ion Experiments,
 - Kicker Test,

ilr

İİL

- and Upcoming Run Plan
 - Junji Urakawa
- Laser Compton Source for Polarized e⁺
 - Tsunehiko Omori

Previously Achieved Emittance

Emittance Recovery

- Recent observed emittance performance has been ≥ 20 pm
- Plan outlined to recover low emittance
 - Optics correction
 - BPM alignment and calibration
 - Magnet alignment
 - Other errors

ATF2 construction schedule

March 7, 2008 TILC08

Global Design Effort

CesrTA Session

Reports

İİL

- Introduction, Mark Palmer
- Low Emittance Tuning, Dave Rubin
- Electron Cloud Program, Mark Palmer
- Schedule and Status, Mark Palmer
- General Discussion

Cornell University Laboratory for Elementary-Particle Physics

CesrTA Project Status I

- CesrTA project funding has been approved
 - Joint NSF/DOE funding
 - Funding spans FY08-FY10
 - Funding levels consistent with a 2 year experimental program
 - As of late February, funding agreements in place with NSF and DOE
- Research program and duration have been de-scoped from original proposal

Cornell University Laboratory for Elementary-Particle Physics

De-Scoped CesrTA Program

- Plan continues to emphasize
 - EC Growth and Instability Studies
 - Development of low emittance tuning techniques (target $\varepsilon_y < 20 \text{pm}$)
 - Development of x-ray beam size monitor to characterize ultra low emittance beams (1-D camera array)
 - Program to preserve ~ 120 CesrTA operating days per year
- De-scoped items
 - Study of ion related instabilities and emittance dilution
 - 2-dimensional x-ray beam size camera upgrade
 - Contingency for:
 - Follow-up tests of alternative mitigation techniques
 - Tests of ILC prototype hardware
 - Further reductions in beam emittance, and further refinement of low emittance tuning methodology

б

MAIN COMPONENT POSITIONS

- L0 wiggler experimental region design work well underway
 - Installation during July down
 - Heavily instrumented throughout with vacuum diagnostics
 - Targeting full design review this month followed by full scale production

- Note: Part of CLEO will remain in place
 - At present unable to remove full detector
 - Time savings

Cornell University Laboratory for Elementary-Particle Physics

Retarding Field Analysers

- Beam tests have continued through CLEO-c conclusion
- Upgraded readout electronics for large channel count RFAs are now ready for production
- Thin RFA structure performing well

March 5, 2008

TILC08 - Sendai, Japan

Global Design Effort

Cornell University Laboratory for Elementary-Particle Physics

Chambers with Thin RFAs

March 7, 2008 TILC08 TILC08 - Sendai, Japan

Global Design Effort

CesrTA Schedule

Cornell University Laboratory for Elementary-Particle Physics

Overview

	2008			2009						20	10			
	Apr May	Jun	Jul Aug Sep	Oct Nov De	ec ,	Jan Feb Mar	Apr May	Jun J	ul Aug	Sep (Oct Nov	Dec	Jan F	eb Mar
Preparation for Ring Reconfiguration														
Downs with Upgrades/Modifications								_						
CesrTA Runs														
CHESS Runs														
Low Emittance Program														
BPM System Upgrade														
Positron Beam Size Monitor														,
Electron Beam Size Monitor														,
Survey and Alignment Upgrade					Т									
Beam Studies														
Electron Cloud Studies														
Instrumented Vacuum Chambers w/EC Mitigation														
Feedback System Upgrade														
Photon Stop for 5 GeV Wiggler Operation														
EC Growth Studies														
Beam Dynamics Studies at Low Emittance														
Legend:	D D In C	esigi own istall omm pera	n/Fabrication Period ation hissioning tions and Ex	periments										

Cornell University Laboratory for Elementary-Particle Physics

Conclusion

- CesrTA program is presently ramping up
- R&D Targets:
 - Now through mid-2009
 - Complete low emittance machine reconfiguration and upgrades
 - Deploy and commission instrumentation needed for low emittance program
 - Study EC growth studies in wigglers, dipoles, quadrupoles and drift regions in CESR
 - Initial EC mitigation studies
 - Mid-2009 through April 1, 2010
 - Work towards progressively lower emittance operation
 - Complete EC mitigation studies
 - EC beam dynamics studies at the lowest achievable emittances
- Immediate focus:
 - Engineering preparation for machine reconfiguration
 - Preparation/testing of EC vacuum chambers, vacuum diagnostics, and beam instrumentation

Electron Cloud Session

- Update on New Cyclotron Resonances in Electron Cloud Dynamics
 - Christine Celata (LBNL)
- Study of a Clearing Electrode at KEKB First beam test
 - Yusuke Suetsugu (KEK)
- Electron Cloud Study for ILC Damping Ring at KEKB and CESR
 - Kazuhito Ohmi (KEK)
- Electron Cloud R&D
 - Mauro Pivi (SLAC)

Celata **Another effect, from POSINST Simulation: Electrons more Dispersed in Resonant Case** BERKELEY L **Density Distribution Averaged over Run (POSINST) X-Y Plane** 0.02-0.02 - 3.0x10¹³ /m³ $-7x10^{13}$ $/m^3$ 0.01 _ 2.5 0.01-6 - 5 2.0 Y [m] <u>м</u>[ш] _ 4 0.00 0.00--1.5 _ 3 -1.0 _ 2 -0.01 _ 0.5 -0.01-_ 1 0.0 _ 0 -0.02--0.02--0.01 -0.02 0.02 -0.02 0.00 0.01 0.02 -0.01 0.00 0.01 x [m] x [m] B at a spike High B ILC Sendai meeting, 2-5-08 9 March 7, 2008 TILC08

Global Design Effort

Assembly of electrode • • Suetsugu Connection part 34 mm 2.3 mm Connection to feed-through Metal-coated Copper Metal Al_2O_3 screw bridge screw Bakable up to 140 °C

March 7, 2008 TILC08

Global Design Effort

Ring Comparisons for EC Dynamics Optics parameters

	Physics run	Low emittance	CesrTA	OCS	PEP-II
Circumf. (m)	3016	3016	768	6	2200
E (GeV)	3.5	2.3	2.0	5.0	3.1
ε _x (nm)	18	1.5	2.3	0.5	48
α (10 ⁻⁴)	3.4	2.4	64	4.2	13
σ, (mm)	6	4.2 (6.1)	6.8	6	12
Rf voltage	8.0	2.0 (1.0)	15	24	
σ _δ (%)	0.073	0.048	0.086	0.128	0.081
τ _{x,y} (ms)	40	150	56.4	26	40
Bucket height		1.86 (1.13)		1.5	

Emittance increases due to IBS. ($\epsilon_x(nm), \epsilon_y(pm)$) KEKB-DRT (1.5,1,5)->(5, 5) or (1.5, 6)->(4, 16) CesrTA (1.8,4.5)->(6,16) March 7, 2008 TILC08 Global Design Effort

39

Ohmi

Head-Tail Instability Thresholds

Threshold for various rings

Ohmi

	KEKB	KEKB	KEKB-DRt	CesrTF	ILC-OCS	PEPII
L	3016	3016	3016	768.44	6695	2200
gamma	6849	6849	4501	3914	9785	6067
Np	3.30E+10	7.60E+10	2.00E+10	2.00E+10	2.00E+10	8.00E+10
ex	1.80E-08	1.80E-08	1.50E-09	2.30E-09	5.60E-10	4.80E-08
bx	10	10	10	10	30	10
ey	2.16E-10	2.16E-10	6.00E-12	5.00E-12	2.00E-12	1.50E-09
by	10	10	10	10	30	10
sigx	4.24E-04	4.24E-04	1.22E-04	1.52E-04	1.30E-04	6.93E-04
sigy	4.65E-05	4.65E-05	7.75E-06	7.07E-06	7.75E-06	1.22E-04
sigz	0.006	0.007	0.009	0.009	0.006	0.012
nus	0.024	0.024	0.011	0.098	0.067	0.025
Q	3.6	5.9	7	7	7	3.7
omegae	1.79E+11	2.51E+11	5.29E+11	5.01E+11	6.31E+11	9.20E+10
phasee	3.6	5.9	15.9	15.0	12.6	3.7
К	3.6	5.9	15.9	15.0	12.6	3.7
rhoeth	6.25E+11	3.81E+11	9.60E+10	2.92E+12	1.91E+11	7.67E+11
March 7, 2008	TILC08	Glob	al Design E	ffort		4(

- Lattice Selection
- Cost Reduction
- Proposed TDP Reorganization

Work Package #	Work Package Title	
1	CesrTA	
2	DR studies at KEK-ATF	
3	DR studies at DA Φ NE and other facilities	Wolski
4	ILC DR Beam Dynamics	
5	ILC DR Technical Systems	

March 7, 2008 TILC08

Global Design Effort

Upcoming DR Workshop

- Damping Rings R&D Workshop and CesrTA Kick-off Workshop
 - July 8-11, 2008
 - Cornell University ILR Conference Center
 - Details to appear soon