Preparation for Jet Analysis of Jupiter data using MarlinReco+PandoraPFA

Mar 2-7 TILC08 @ Sendai Satoru Uozumi (Kobe University)

Goal of this work: Detector optimization with benchmark process of Zh -> jets mode

Processes (e⁺e⁻→)	√S (GeV)	Observables	Comments
$ZH, ZH \rightarrow e^+e^-X,$	250	σ, m _H	$m_{H}\text{=}120GeV,$ test materials and γ_{ID}
→ μ⁻μ+X	250	σ, m _H	m_H =120GeV, test $\Delta P/P$
ZH, H→cc, Z→vv	250	Br(H→cc)	Test heavy flavour tagging and anti- tagging of light quarks and gluon
, Z→qq	250	Br(H→qq)	Same as above in multi-jet env.
$Z^* \rightarrow \tau^+ \tau^-$	500	σ , A_{FB} , $Pol(\tau)$	Test π^0 reconstruction and τ rec. aspects of PFA
tt, t→bW, W→qq'	500	σ , A_{FB} , m_{top}	Test b-tagging and PFA in multi-jet events. m_{top} =175GeV
$\chi^+\chi^-, \chi_2^0\chi_2^0$	500	σ, mχ	Point 5 of Table 1 of BP report. W/Z separation by PFA

This benchmark process probes performance of :

- Vertexing and flavour-tagging.
- Di-jet mass reconstruction.

- Interfaces are being developed to reconstruct Jupiter data with Marlin modules.
- Before entering the actual analysis, need to solve many compatibility problems and to tune parameters using single particles / z-pole events.

This talk reports preliminary results of:

- Tracking performance (P_T, d₀ resolution) of MarlinReco,
- Vertexing and flavour tagging performance of LCFIVertex,
- Higgs-mass distribution reconstructed by PandoraPFA,

for the Jupiter & GLD data.

Momentum Resolution for single muon

- Single muon data ($\cos\theta$ =0, ϕ =90°, z_0 =+1cm) generated by Jupiter and converted to Icio.
- The momentum resolution looks consistent with past result with Jupiter+Satellites (except p_T =500GeV).

Momentum Resolution for single muon

Impact-Parameter Resolution for single muon

- Again Single muon data with generated $d_0 = 0 \mu m$.
- Going to be slightly worse in >100 GeV, but reasonably good for the vertex finding.

Flavour tagging with LCFIVertex (Z-pole data by Jupiter&GLD)

- Same neural-net with LDC simulation is used.
- The b-tagging performance is reasonably good.
- c-tagging for c-jets is not yet as good as LDC case, need investigation.

Flavour tagging with LCFIVertex (Zh, $Z\rightarrow vv$, $h\rightarrow j$ j data by Jupiter)

- The b-tagging gets worse with boosted jets (Mh=160GeV).
- Overall performance is not well enough yet, need tuning of LCFIVertex parameters for the GLD/GLD'.

Reconstructed Higgs Mass by PandoraPFA (Zh, $Z\rightarrow vv$, $h\rightarrow j$ j data by Jupiter)

- Very preliminary, just plot all the events, no cut is applied.
- Still peak position is shifted from the generated value?
 Need investigation and tuning...

Summary

- We are going to perform optimization study using
 Zh → jets mode using Jupiter+Marlin processors.
- After defeating many technical problem on Jupiter→Marlin compatibility, an analysis path is established!
- However performance of event reconstruction is not yet perfect, need investigation and precise tuning on many parameters (calibration, neural-net, cut values...)

(Near Future) Plans

- Detailed parameter tuning to have the best performance with GLD and GLD-prime geometry.
- Estimate sensitivity on Br(H→cc) and compare it between the GLD and GLD-prime.