

SiD Global Parameter Optimization using Pandora PFA

04.03.2008 M. Stanitzki

STFC-Rutherford Appleton Laboratory

Outline

- Recap of talk given at SID Workshop 29th Jan 2008
- Only results at the Z pole so far
- 100 GeV/250 GeV Jets in the queue
- Results are PRELMINIARY

The Idea

- Use the current best Particle Flow Algorithm
 - PandoraPFA by Mark Thomson
- Start optimizing SiD
 - r,z,T,
 - layers, segmentation
 - material, technology

- Caveat : Only works well within Mokka/Marlin Framework
- No real SiD detector model available in this framework
- Have to use a SiD look-alike, the SiDish

PandoraPFA

- Developed by Mark Thomson
- The world's best so far (V2.01 available)
- See Mark's Talk yesterday
- Well tailored towards LDC00Sc and (most recent) LDC01_05Sc

The setup

- Use PandoraPFA 2.01 & LCPHYS
- Start of with LDC00Sc (Reference Point)
- Then go to SIDish
- Use track cheating
 - tracking shouldn't matter ... to first order
- Vary parameters
 - radius
 - Z
 - field
 - layers
 - ...

LDC00Sc

- Tracker radius=1.69 m
- Tracker Z=2.73 m
- ECAL SiW 30+10 layers, 1x1 cm tiles
 - 1.4 mm/4.2 mm W + 2.5 mm Gaps
- HCAL Fe-Scint 40 layers 3x3 cm tiles
 - 18 mm Iron + 7.5 mm Gap
- 4 T Field
- Basically the old Tesla Design
- A detector that will never be build ...

The "SIDish"

- Tracker radius=1.25m
- Tracker Z=1.7 m
- ECAL SiW 20+10 layers, 1x1 cm tiles
- HCAL Fe-Scint 40 layers 3x3 cm tiles
- Same Calorimeter layout as LDC00Sc (besides 30+10->20+10)
- 5 T Field

The different variations

- Vary Field
 - 4,5,6 T
- Vary R
 - 1.0, 1.25, 1.5 m
- Vary Z
 - 1.5, 1.7,1.9 m
- Vary ECAL layers
 - -30,40

- Vary HCAL Material
 - Fe,Cu
- We have too much phase space!

Summarize ...

Detector TAG	B-field	ECAL layers	ECAL cell size	HCAL layers	HCAL cell size	Tracker radius	Tracker length
LDC00	4	40	1x1	40	3x3	1690	2730
SIDish	5	30	1x1	40	3x3	1250	1700
SIDish_r10_z17	5	30	1x1	40	3x3	1000	1700
SIDish_r15_z17	5	30	1x1	40	3x3	1500	1700
SIDish_r125_z15	5	30	1x1	40	3x3	1250	1500
SIDish_r125_z19	5	30	1x1	40	3x3	1250	1900
SIDish_4T	4	30	1x1	40	3x3	1250	1700
SIDish_6T	6	30	1x1	40	3x3	1250	1700
SIDish_ecal40	5	40	1x1	40	1x1	1250	1700

Current Status

- For each point
 - photons, hadrons, uds jets (45,100,250 GeV)
 - approx 45000 events per point
 - Check GEAR XML file is correct
 - for all points check PandoraPFA response
- Simulation takes forever
 - 1000 Z->uds (45 GeV) ~ 44 hours

The first result

- Results for 45 GeV jets ready
- They are **PRELIMINARY**
- Numbers quoted are
 - cos(Thrust) < 0.7 : Barrel Events
- There are a set of caveats
 - Had to calibrate response for each detector variation
 - Hadronic response is tricky ...
 - Can have an effect <1 % on 1/sqrt (e)
 - Calibration can be tuned with existing samples
 - Could use even more statistics
- So numbers could/will change slightly ...

Preliminary Results

Detector TAG	B-field	Tracker radius	Tracker length	rms90 (uds45)	Error
LDC00	4	1690	2730	24.6	0.3
SIDish	5	1250	1700	27.9	0.4
SIDish_r10_z17	5	1000	1700	30.4	0.4
SIDish_r15_z17	5	1500	1700	27.7	0.4
SIDish_r125_z15	5	1250	1500	29.0	0.4
SIDish_r125_z19	5	1250	1900	28.5	0.4
SIDish_4T	4	1250	1700	28.9	0.4
SIDish_6T	6	1250	1700	28.6	0.4

R dependence (Barrel)

Dependence on Tracker Radius (R)

Z dependence (Barrel)

Another parametrization

R*Z dependence

Some comments

- It is clear, that making R bigger does help
- Z is less obvious
- Are we asking the right question ?
- Probably we should scale Z and R at the same time
- We'll learn much more with higher energy jets

B field dependence (Barrel)

Dependence on B-Field

Comments

- 5T seem to be a sweet spot ...
 - Could be coincidence
 - We need more points 4.25, 4.5, 4.75, 5.25, 5.5 ...
 - Just a few 10 GB more
- Also higher energy jets will help us a lot to understand the dependence

Segmentation?

- For the HCAL need to hack Mokka, it seems
 - need to look into this again
- For the ECAL it is a simple study
- Jobs are running
- Changing segmentation has an impact on Pandora
 - MIP finding, Clustering ...
- Digital vs. Analog ...
 - That is a completely different question...
 - Also requires algorithm changes/Optimization
 - Works at some level already with RPC's

• SiD • RPC/GEM/Scintillator HCAL

- This is hard
- No model for GEM's afaik
- RPC model is existing ... at some level
- This will need real work
- Running Digital HCALs is possible
 - Mark showed that yesterday

Summary

- Machinery in place
- We have about 450 GB of simulation right now
- Thanks to
 - Steve Worm submitting jobs
 - Ray Cowan for setting things up at SLAC and taking on the 250 GeV samples
- We are becoming CPU limited ...
- Book-keeping is becoming challenging ...
- Stay tuned

The Setup

- •CLHEP 2.0.2.2
- •LCIO v01-09
- •ROOT v5.16.00
- •GEAR v00-08
- •GEANT 4.9.0.p01

- Mokka 06-04-p03
- Marlin v00-09-10
- MarlinUtil v00-05
- MarlinReco v00-05
- PandoraPFA v02-00