

Preliminary Design Studies on LDC Vacuum Pipes

Y. Suetsugu, KEK

- Loss factor
- Structural strength
- Expected pressure profile

• Base Model

• Model for calculation

ilr

ÌİĻ

• Results

 k_{total} (two beams) ~7x10¹³ V/C @ $\sigma_z = 0.3$ mm

If
$$q = 3.2 \text{ nC}$$
, $N_b = 5400 \text{ bunch}$,
and $f_r - 5\text{Hz} : I - 8.6 \times 10^{-5} \text{ A}$

 $\therefore P = kql = \sim 20$ W (one side)

2008/03/3-6

• Effect of round edges at cone section

• Effect of round edges

- $-\sigma_z = 3 \text{ mm}$
- Two beams

Туре	Loss factor (<i>k</i> _{total})	Ratio
LDC-1	6.81731x10 ¹²	100%
LDC-2	6.71416x10 ¹²	98.5%
LDC-3	6.68828x10 ¹²	98.1%

Almost no effect on the loss factors.

- Dissipation of power
 - Examples of lower modes in the structure

Most of power will be dissipated at the cone section.

Structural strength

- Deformation and stress
 - Material: Al alloy (Al5052, H34), with a thickness of 3 mm.
 - Load: Atmospheric pressure (1.013x10⁵ Pa)
- By ANSYS Total length = 3.8 m $E = 7.056 \times 10^{10} \text{ N/m}^2$ v = 0.3Axisymmetrical (2D) Result (Deformation)

Structural strength

• Result: Deformation

Deformation is much decreased by the round edges.

Structural strength

• Result: Deformation

Deformation further reduces to a half.

Stress is also much reduced by the round edges.

2008/03/3-6

LDC_2 LDC_3 **Deformed shape** is exaggerated. ANS NODAL SOLUTION FEB 23 2008 FEB 23 2008 SUB =1 STEP=1 13:41:00 13:38:14 TIME=1 SUB =1 TIME=1 (AVG) SEOV DMX =.610E-04 SEQV (AVG) SMN =253760 DMX =.381E-04 SMX = .350E+08 SMN =113780 $< 1.5 \times 10^7$ Pa SMX =.265E+08 2.7x10⁷ Pa 2.7x10⁷ Pa N () .120E+08 .600E+07 .120E+08 .180E+08 .240E+08 .600E+07 .180E+08 .240E+08 .300E+07 .210E+08 .300E+07 .900E+07 .150E+08 .270E+08 .900E+07 .150E+08 .210E+08 .270E+08

Stress further reduces to a half. (Yield strength of aluminum alloy is 2.2x10⁸ Pa)

2008/03/3-6

Base Model

- Gas desorption
 - Pre-baking before assembling should be done.
 - The chambers should be treated carefully after the pre-baking to avoid any contamination.
 - Water should be kept away as much as possible.
 - Thermal gas desorption rate without baking:
 - After 10 hours evacuation:
 - CO: 2 x10⁻⁷ Pa m³ /s/m² (~ 2 x10⁻¹⁰ Torr //s/cm²)

 H_2 : 2 x10⁻⁶ Pa m³/s/m² (~ 2 x10⁻⁹ Torr //s/cm²)

- After 100 hours evaculation (after 4 days)
 CO: 2 x10⁻⁸ Pa m³ /s/m² (~ 2 x10⁻¹¹ Torr //s/cm²)
 H₂: 2 x10⁻⁷ Pa m³ /s/m² (~ 2 x10⁻¹⁰ Torr //s/cm²)
- About 20 times larger than those after baking (O. Malyshev)

- Pumps
 - NEG strip : ST707 (SAES Getters), for ex.
 - Aligned at the circumference of pipe

Results

Summary

Some vacuum properties of LDC beam pipe was studied.

- (1) Loss factor of one side for two beams is about 7x10¹³ V/C, and the dissipated power will be about 20 W.
 - Round edges of cone sections has little effect.
- (2) Structural strength is much improved by introducing round edges at cone section.
 - The stress is much lower than the yield strength of a typical aluminum alloy.
- (3) Vacuum pressure almost less than 1x10⁻⁶ Pa will be obtained without baking.
 - Effective pumping speed of about 0.7 m³/s is required at least for H₂.

• Reference

2008/03/3-6

TILC08-Sendai

18

- Assumptions
 - Distributed pumping to effectively evacuate these conductance-limited beam pines
 - conductance-limited beam pipes
 Use NEG strip : ST707 (SAES Getters), for ex.

ST 707/CTAM/30D Strip Typical Sorption Curves

2008/03/3-6