Why Do We Need PID Capability in HCAL (and BeamCal)? – A Case Study

Motivation

BeamCal for e vetoing SM backgrounds

- Desired other PID capability in HCAL/BeamCal
- □ Summary

Based on

- 1. P. Bambade, V. Drugakov, W. Lohmann, physics/0610145
- 2. Z. Zhang, arXiv:0801.4888v1 [hep-ph] + new and earlier studies

Introduction

Search for DM and understanding its nature is a key subject

ILC is expected to play a unique role However the precision achievable at ILC does not come without effort

ILD@TILC08 (Sendai), 7/3/2008

Example Results on Relic DM Density

Expected Signature at an ILC Detector

Difficulty n° one:

Missing energy from both LSP $\tilde{\chi}_1^0$ and neutrino(s) in tau decay final state

Difficulty nº two:

Large SM background contributions

Cross Sections: Signal versus SM Backgrounds

Signal (Scenario D'): $m_{\tilde{r}^0} = 217 GeV$, $m_{\tilde{r}^0} = 212 GeV$ \succ

Ecm (GeV)	Beam Pol.	σ (fb)
442	Unpol.	0.456
500	Unpol.	10
500	0.8(e-)/0.6(e+)	25
600	Unpol.	20
600	0.8(e-)/0.6(e+)	50

Method one: Optimal Ecm (hep-ph/0406010)
 Method two: Large Ecm (hep-ph/0608226)

SM Backgrounds: \succ

$\gamma^*\gamma^*$	\rightarrow	$\tau^{+}\tau^{-}(E_{t}>4.5GeV):$	σ~4 .3x10 ⁵ fb	
	\rightarrow	$\mu^{+}\mu^{-}$ (E _t >2GeV):	σ∼ 5.2x10 ⁶ fb	
	\rightarrow	hadrons (direct*direct dominant)		
		ccbar	σ~8.2x10⁵ fb	
	\rightarrow	WW		
e^+e^-	\rightarrow	μ+μ-, τ+τ-:	$\sigma \sim 1.0 x 10^3 \text{ fb}$	
	\rightarrow	WW		

ILD@TILC08 (Sendai), 7/3/2008

Example: Dominant $\gamma\gamma$ Background

SM background production & decays @ e+e- collider

- Tau decay final states: Measured in the main detector
- Spectator e+ and e Mostly going into the BeamCal

ILD@TILC08 (Sendai), 7/3/2008

Background Rejection

> Analysis cuts relying on the main detector

- A big fraction of background can be rejected using these cuts but not sufficient for a quasi-background free analysis
- ➔ Forward veto is needed

ILD@TILC08 (Sendai), 7/3/2008

Forward (BeamCal) Veto

- \Box Identify energetic spectator e+ and/or e- from $\gamma\gamma$ events
- Complication from beamstrahlung

 Very challenging to have a radiation hard yet a very efficient BeamCal for e/γ ID

Forward (BeamCal) Veto Efficiency

A study by P. Bambade, V. Drugakov, W. Lohmann, physics/0610145:

- Fine granularity tungsten/diamond sample calorimeter @ 370cm from IP
- Design depends on beam configuration

Identify spectator e+/e- out of huge beamstrahlung e+e- pairs Efficiency is energy and angle dependent

Vetoing Energetic μ/π Down to 20mrad?

Background free stau detection needs this capability:

ее→ееµµ, ее→ееττ:

μ+e or τ+e visible in the detector \rightarrow signal like Another e in the beam-pipe, another μ or $\tau \rightarrow \mu/\pi$ (energetic) @ low angle

This capability will significantly improve signal selection efficiency (otherwise eX & μμ topologies have to be excluded)

Importance of PID in LHCAL and BeamCal

Muons (taus) from 2 photons backgrounds peak at low angles

Important to veto these muons (taus) as much as one can

Distri. of Other e, μ with one μ in LHCAL/BCAL

ILD@TILC08 (Sendai), 7/3/2008

Summary on Final Selection/Rejection

→ VETO eff. is pretty good for method 2 but needs improvement for method 1

ILD@TILC08 (Sendai), 7/3/2008

Summary

- Excellent veto efficiency of the BeamCal is a must
- \square μ/π PID capability is strongly desirable to lowest angles
- Depending on SUSY scenario, DM density precision @ ILC can compete with expected precision from e.g. Planck

mSUGRA SUSY DM Scenarios after WMAP

 \rightarrow The precision on SUSY DM prediction depends on ΔM & thus

ILD@TILC08 (Sendai), 7/3/2008