

Session Introduction & Damping Rings Baseline Lattice Decision

Mark Palmer ILC Damping Rings Group

March 4, 2008 TILC08 **Global Design Effort**

1

Outline

- Welcome to all who are able to attend (in person and via WebEx)
- Parallel Session Plans
 - Baseline Lattice Evaluation Tuesday Morning (8:15 am)
 - OCS8
 - FODO4 ⇔ FODO5
 - DCO
 - ATF Status and Plans Tuesday Afternoon
 - CesrTA Discussion Wednesday Morning (9 am)
 - Electron Cloud Status Reports Wednesday Afternoon
 - DR Closeout 4pm Wednesday Afternoon

Baseline Lattice Decision

Introduction

- The Damping Rings Group stated goal was to settle on a baseline lattice prior to this meeting
- Recent events have conspired to make this a difficult task
 - Loss of key lattice design support for remainder of FY08
 - Adjusting to some slightly modified requirements
- Our goal for this morning's session is to review the lattice options and try to move towards that goal
 - Updates from lattice designers
 - Comparison of the lattice designs
 - Generate a lattice evaluation table
 - Discussion to pick a baseline design for the ILC Technical Design Phase

TILC08

Baseline Lattice Choice

- A stable lattice is required for much of the technical effort that we hope will continue during the Technical Design Phase
 - Conventional Facilities
 - Magnets
 - Vacuum
 - **RF**
- All the lattice candidates have been designed to achieve the basic parameters:
 - Equilibrium Emittance
 - Damping Time

TILC08

- Momentum Compaction Factor (but see next slide)
- Dynamic Aperture

Momentum Compaction Factor

- Conclusion of KEK DR Workshop
 - $\alpha_p \sim 2 \times 10^{-4}$ is acceptable
 - Lattices should, however, incorporate capability to tune momentum compaction required in case instability issues do arise
 - Relaxed $\alpha_{\rm p}$ relaxes RF requirements and allows reconsideration of the ~6mm bunch length option
 - Significantly eases bunch compressor requirements
 - Lattices should maintain space for additional RF just in case the momentum compaction needs adjustment to control instabilities

EDR Baseline Lattice Parameters

Main Parameters

-		• • •							
		Proposed for EDR							
	KDK [1]	low rf	nominal	high threshold					
Beam energy	5 GeV	5 GeV							
Harmonic number	14516	14042							
RF frequency	650 MHz	650 MHz							
RF voltage ¹	22.1 MV	13.2 MV	21.6 MV	25.8 MV					
Number of rf cavities	18	8	16	16					
Momentum compaction factor ¹	4×10 ⁻⁴	1.1×10^{-4}	$\times 10^{-4}$ 1.8 $\times 10^{-4}$ 2.7 \times						
Natural rms bunch length ¹	9 mm	6.6 mm	6 mm	6.6 mm ⁽²⁾					
Natural energy spread	0.13%		6						
Natural emittance	5 µm		L						
Transverse damping times	25 ms		5						
Betatron acceptance $(A_x + A_y)$	> 0.01 m		n						
Energy acceptance	± 0.5%		± 0.5%						

Table 1: Main parameters of the baseline lattice for the RDR and proposed for the EDR.

¹ These parameters should be variable over some range: see Table 2.

² Can be reduced to 6 mm with 30.8 MV total rf voltage (18 cavities): see Table 2.

Max. value for bunch compressors

Updated targe (previously 4×10⁻⁴)

March 4, 2008 TILC08

Global Design Effort

Since the KEK DR WS

- OCS8
 - Work on hold due to US funding situation
- FODO4
 - ⇔ FODO4b
 - Dispersion suppressor and matching sections modified to provide variable momentum compaction without varying the ring circumference
 - Chicane added
 - Other refinements
 - ⇒ FODO5
 - Lower momentum compaction and shorter bunch length
- A new entry
 - DCO
 - Wolski and Korostelev
 - Lower momentum compaction and shorter bunch length

DCO at a glance

- Arcs consist of a total of 192 FODO cells
- Flexibility in tuning momentum compaction factor, given by phase advance per arc cell:
 - 72° phase advance: $\alpha_p=2.8\times10^{-4}$
 - 90° phase advance: $\alpha_p = 1.7 \times 10^{-4}$
 - 100° phase advance: $\alpha_p = 1.3 \times 10^{-4}$
- No changes in dipole strengths needed for different working points.
 - Racetrack structure has two similar straights containing:
 - injection and extraction in opposite straights
 - phase trombones
 - circumference chicanes
 - rf cavities
 - "doglegs" to separate wiggler from rf and other systems
 - wiggler

İİĹ

Global Design Effort

Parameter Comparisons

	OCS8	OCS8 FODO4		FODO5		DCO					
Beam energy (GeV)	5.00										
Circumference (m)	6476.440										
RF frequency (MHz)	650										
Harmonic number	14042										
Number of straight sections	8	4			8			2			
Arc cell type	TME	FODO			FODO			FODO			
Arc cell length (m)	38.9	29.4			28.4			21.0			
Number of arc cells	128	184			188			192			
Number of dipoles per arc cell	1	2			2			1			
Arc dipole length (m)	6	2			2			2			
Arc dipole field (T)	0.146	0.142			0.139			0.273			
Number of quadrupoles per arc cell	4	2			2			2			
Number of sextupoles per arc cell	4	2			2			2			
Natural rms bunch length (mm)	9.00	9.00		6.00			6.00				
Natural energy spread (10 ⁻ ³)	1.28	1.28		1.28			1.27				
Transverse damping time (ms)	25	25		25			21				
Approximate phase advance per cell	90	60	72	90	72	90	108	72	90	100	
Momentum compaction factor (10 ^{-₄})	4.0	6.0	4.0	2.0	4.00	2.5	1.7	2.8	1.7	1.3	
Normalised natural emittance (m)	5.2	5.4	4.2	3.4	3.9	3.1	2.6	6.5	4.7	4.3	
RF voltage (MV)	21.2	31	22	15	45	29	21	32	21	17	
RF acceptance (%)	1.46	1.65	1.48	1.21	2.70	2.45	2.17	2.35	1.99	1.72	
Synchrotron tune	0.059	0.091	0.061	0.038	0.089	0.056	0.037	0.061	0.038	0.028	
Horizontal tune	49.23	40.29	46.28	58.29	50.30	61.30	72.28	64.75	75.20	80.45	
Natural horizontal chromaticity	-64	-48	-54	-74	-63	-79	-108	-77	-95	-107	
Vertical tune	53.34	41.25	47.24	57.25	51.26	62.24	69.23	61.40	71.40	75.90	
Natural vertical chromaticity	-64	-49	-55	-73	-63	-80	-100	-76	-93	-104	
March 4, 2008 TILC08	3 TILC08 Global Design Effort 10										

Baseline Lattice Evaluation

- Propose to evaluate the lattices on the basis of 8 general criteria:
 - Lattice Design and Dynamical Properties
 - Conventional Facilities and Layout
 - Magnets, Supports and Power Supplies
 - Vacuum System and Radiation Handling
 - RF System
 - Injection and Extraction Systems
 - Instrumentation and Diagnostics
 - Control System, Availability and Reliability
- Are there other items that should be added?
- We will take time during the working portion of this meeting to review the evaluation criteria