

... for a brighter future

ILC Damping Ring Lattice - OCS8

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Aimin Xiao and Louis Emery Argonne National Laboratory Presented at GDE meeting Mar 4th, 2008

Outline

- Feature of OCS8 lattice
 - 8-fold symmetric lattice based on TME cell
 - Separated asymmetric injection/extraction line
 - Separated injection kickers (7kV pulser)
 - 180° insertion for accumulated injection
 - Lumped extraction kickers
 - RF sections adjusted to accommodate SC rf cavities
 - Phase trombone
 - Circumference-adjustment chicane
 - Dynamic Aperture
- Comparing of TME (OCS8) and asymmetry FODO (DCO) lattice

ILC Damping Ring RDR Lattice (OCS8) – Ring's Layout

Optical Functions

Main Parameters

Table 1: OCS8 principal lattice parameters

Energy	Е	5 GeV	
Circumference	С	6476.4395 m	
Betatron tunes	$ u_x, u_y $	49.22,51.38	
Chromaticity	ξ_x, ξ_y	-63.1,-60	
Momentum compaction	α	3.97×10^{-4}	
Natural emittance	$\gamma \epsilon_x$	$4.99~\mu\mathrm{m}$	
Damping time	$ au_y$	24.7 ms	
RF voltage	V_{RF}	21.2 MeV	
Energy loss per turn	U_0	8.7 MeV	
Momentum acceptance	ϵ_{RF}	1.48%	
Synchrotron tune	ν_s 0.06		
Equilibrium bunch length	σ_z	9 mm	
Equilibrium energy spread	σ_{δ}	0.128%	

Realistic Septum and Kickers for Injection

Possible DC Septum performance (from Daphne)¹

DC Septum	Beam	Required	Length	Sheet	
	Separation	Field		Thickness	
SPInj.1	4 mm	0.104 T	1 m	1.5 mm	
SPInj.2	10 mm	0.4 T	0.5 m	6 mm	
				(water cooled)	
SPInj.3	23 mm	0.8 T	0.8 m	>= 12 mm	
				(water cooled)	

- Strip-line Kicker
 - ± 7.5 KV per strip-line
 - 35 mm radius
 - Beam occupy region < 28 mm (to avoid bad field region)
 - 36 strip-lines for injection; 22 strip-lines for extraction

¹M. Modena, H. Hsieh and C. Sanelli, "High Current Density Septa for DAΦNE Accumulator and Storage Rings"

s(m)

Extraction Line

RF Section + Phase Adjustment Trombone

- Now have enough space for the SC rf cavities with end-components.
- Cavities from different rings can not be stacked on top of each other.
- Need to preserve free space for future 6-mm bunch length operation.
- The required rf section length is about 4 times of previous design and is suitable for occupying a stand alone straight section.

- Both section types have similar lattice configuration. So some quadrupole magnets are directly above another.
- Two rf section section in a ring

RF Section + Phase Adjustment Trombone

- Has ability to install 10 + 10 rf cavities (total 20 + 20)
- Phase trombone has adjustment ability of +/- 0.25 (total +/- 0.5)

Circumference Adjustment Chicane

- Adjustment ability: ±7.5 mm
- Emittance dilution: ~15%
- Total 4 cells

Dynamic Aperture - Without Multipole Errors

Injection beam size: 20 mm (H) x 12 mm (V)

Color indicates initial x amplitude

Dynamic Aperture – with Multipole Errors

Injection beam size: 20 mm (H) x 12 mm (V)

Error specified by Y. Cai (SLAC).

- The original data is for bore radius of 50mm.
- We scaled the data to bore radius of 30mm.
- Larger magnet size (= weaker multipole error strength) gives larger dynamic aperture.

Dynamic Aperture

Aperture comparable to before the injection change

Comparing of asymmetry FODO (DCO) with TME (OCS8)

- Use of same dipole strength and cell length to compare radiation effect.
- Both cell provide same radiation damping.

2 quads per cell

3 quads per cell

Arc cell parameter

	Nux	I1(E-04)	I5(E-08)	Chrom-x0	Chrom-y0
DCO-High Alpha	0.206(74)	96.5	6.63	-0.24	-0.23
TME-High Alpha	0.186(67)	96.5	7.28	-0.23	-0.19
DCO-Mid Alpha	0.25(90)	60.0	3.46	-0.32	-0.32
TME-Mid Alpha	0.22(80)	58.7	3.75	-0.29	-0.24
DCO-Low Alpha	0.279(100)	45.2	2.38	-0.38	-0.38
TME-Low Alpha	0.25(90)	41.3	2.36	-0.35	-0.28

Note:

- For same required alpha(I1), both cell provide similar quantum excitation (I5).
- DCO has less quads (2/cell) than TME (3/cell).
- TME has less phase advance for low alpha (90 deg.) probably would have better DA (?)

A FODO/TME cell (?)

- DCO has many advantage than TME (A. Wolski's note)
 - Less magnets (2 quads/cell)
 - Separation between dipole and downstream quad (positron ring) is large.
 - ...
- But it has DA problem for low-alpha optics
- TME cell provide same alpha with less phase advance per cell
 - 90 deg. for low alpha
 - Possible of using non-interleave sextupole to solve DA difficulty (?)
 (unfortunately we don't have time to confirm it)
- Can a cell be tuned between this two structures?

 $\delta_{E}/p_{o}c = 0.$ Table name = TWISS

Turn off this quad.

TME become to asymmetry FODO (DCO)

 $Table\ name = TWISS$

D(m)

Summary

- No much change to OCS8 lattice since last December.
 - OCS8 had been slightly changed to suit injection requirement.
- Compared asymmetry FODO cell (DCO) and TME. Found out that for same alpha, DCO and TME will do similar work.
- DCO has less quads number (2/cell) than TME (3/cell)
- TME may have better performance at low alpha operation (90 degree phase advance) (Not confirmed)
- TME can be changed to DCO by turning off 1 quad. May provide smooth optics change when change alpha (Not confirmed)