

TILC08, March 3-6, 2008 Sendai, Japan

Tomáš Laštovička (University of Oxford)

Outlook

- LCFI Vertex Package
- Physics Benchmark Processes

Higgs self-coupling: ZHH channel SUSY: sbottom Production Analysis

Summary

LCFI Vertex Package

LCFI Vertex Package

- LCFI Collaboration has developed and is maintaining the LCFI Vertex Package
 - □ which is becoming the default software for vertexing, flavour tagging and vertex charge reconstruction within the ILD and SiD detector concepts.
 - Written in C++/Marlin environment (Ben Jeffery, Erik Devetak, ...)
- The package provides:
 - Vertex finder ZVTOP with branches ZVRES and ZVKIN
 - New in ILC environment
 - ☐ Flavour tagging based on Neural Net approach
 - Includes NN package
 - Quark charge determination
 - Currently only for jets with a charged 'heavy flavour hadron'

LCFI Vertex Package

- Other features
 - Fast Kalman filter vertex fitter
 - Using full 6x6 covariance matrix, generic (not helix-model dependant).
 - Additional diagnostic tools
 - To monitor efficiency, purity, resolution, track-vertex assignment...
- Code, default flavour tag Neural Networks and documentation are available from the ILC software portal

http://www-flc.desy.de/ilcsoft/ilcsoftware/LCFIVertex

- The package was carefully tested on 2-jet events
 - and just starts being used in other challenging analyses
 - Large number of jets in events (ZHH, tt).
 - Very soft jets, below 20-30 GeV (sbottom, stau).

Higgs Self-Coupling Analysis

6-jet final state mode

Reconstructing Higgs Potential

To experimentally determine the shape of the Higgs potential the self-coupling of the Higgs field must be measured

$$V(\Phi^*\Phi) = \lambda(\Phi^*\Phi - \frac{1}{2}v^2)^2$$

In Standard Model $g_{HHH}=\frac{3}{2}\frac{M_H^2}{v}$, independent measurement may reveal an extended nature of the Higgs sector:

Why ZHH Channel?

- Measurement of $e^+e^- \rightarrow Zhh$ cross section gives a handle to measure the Higgs self-coupling constant.
- Benchmark channel for ILC.
 - ☐ To evaluate various detector concepts.
- Another option is WW fusion channel.
 - ☐ Small cross section @ 500GeV.

Roughly $\Delta \lambda / \lambda \sim 1.75^* \Delta \sigma / \sigma$

SiD Results - ZHH Channel

- At LCWS 2007 Tim Barklow reported an observation of a large measurement sensitivity to the gluon radiation.
- $\blacksquare qqb\overline{b}b\overline{b}$ channel only

$$e^+e^- \to ZHH$$

 $\to qqb\overline{b}b\overline{b}$

$$\sqrt{s} = 500 \ GeV$$

$$L = 2000 \, fb^{-1}$$

$$\Delta E/\sqrt{E} = 60\% \rightarrow 30\%$$
 equiv to 1.4× Lumi

SiD Results – ZHH Channel

- Results replicate TESLA TDR result when BR(H \rightarrow bb) is increased from 0.687 to 0.853 and when adding $hhZ\rightarrow b\bar{b}b\bar{b}\ell^+\ell^-$ channel.
- Gluon radiation issue may be solved with more sophisticated jet algorithms and jet tagging.
 - ☐ Move to the LCFI vertex package.
 - Which should also allow for b/bbar discrimination.
 - Leading to a significant combinatorics reduction.

Higgs self-coupling analysis with LCFI

- We used SiD FastMC and Perfect Particle Flow simulations:
 - SiD slcio files
 - Marlin/LCFI package used from jet finding on.
 - ZHH signal and tt (tbW) background so far.
 - Final state gluon radiation is ON.
 - ☐ After few minor issues solved it runs flawless...
- Main aim so far
 - ☐ Demonstrate that LCFI package can be used in SiD
 - Although it was not explicitely written for it...
 - ...and even when run under Marlin
 - Evaluate package performance
 - Compare to existing results.

Analysis Flow

■ Path in Norman's analysis flow diagram (shown yesterday)

Neural Net Outputs

Previous SiD analysis

LCFI

NN performance comparison

- c-mistag efficiency versusb-tagging efficiency
- LCFI package gives higher efficiencies
 - Note the logarithmic scale.
 - ☐ ZHH events (signal)
 - Light jet mistag shown for a comparsion.

Jet Tagging Performance Tests

Sum of neural net outputs for all jets

SiD analysis

LCFI

Rather different shapes. LCFI has more binary behaviour.

Invariant masses

Jets ordered according to their tagging NN output

Ш	most b-like comes first (number 1)
	•••
	•••

least b-like comes last (number 6)

ZHH Event Sample

Higgs peaks clearly visible (left side) as well as Z^0 peak (last plot)

Next Steps

- LCFI package proven to work with both FastMC and PPFA SiD data
- The results are rather promising
 - Note that Neural Nets were not re-trained on 6-jet events
 - ☐ It is default NNs coming with the package
 - Which will be eventually re-trained in future.
- Perform signal selection
 - ☐ Use vertex charge information.
- **E**valuate precision of λ_{HHH} determination.

Sbottom Analysis

In collaboration with University of Montenegro (Gordana Medin and Marija Kovačević)

SUSY and Cosmology

- There is 23% of Cold Dark Matter in Universe as measurements tell us.
- Neutralino is Dark Matter candidate.
- During Universe expansion at some point supersymmetric particles are no longer produced but the existing ones may annihilate the rate can be calculated.
- In most of the SUSY parameter space there are still too many neutrinos left.
- Cold Dark Matter favors some particular SUSY scenarios.
 For effective co-annihilation of particles the mass splitting should be small leading to small energies of visible particles.

sbottom and neutralino

If sbottom (stop) and neutralino have a small mass split they can account for co-annihilation in early Universe through this type of diagrams:

Sbottom can be produced at ILC, then it decays to b and neutralino:

If the mass split is low (as suggested) this would lead to very soft b-jets and missing p_T.

Analysis Overview

- Analysis focus point
 - ☐ High masses of sbottom and neutralino (above 200GeV)...
 - ☐ ...with small mass split (10-30GeV)
- Two steps
 - 1) Study on a generator level
 - Detector acceptance/reconstruction is approximated
 - Aim: learn about events and background issues
 - 2) Events fully simulated and reconstructed
 - Not yet started
 - Major issue: Pythia 8 can not write stdhep files...

LEP and CDF/D0 Results

- CDF/D0 measurement at high masses but still relatively hard jets (due to triggers) which are not favored by the dark matter scenario.
- LEP able to measure in the region where the mass difference is only few GeV.
- ILC should not be too much worse but at higher masses.
- Small (meaning tiny) mass splitting is not accessible at ILC.

Analysis Framework

CalcHep

- Used to generate events.
- Write them in Les Houches format and feed to...

Pythia 8

- Used for fragmentation, decays and jet finding
- ☐ It is C++
- ☐ Aimed at LHC (rather than ILC)
- ☐ Contribution to Pythia 8 debugging

Jet Tagging and True Flavour

- True jet flavour evaluated from Pythia's event tree.
- Tagging efficiency studied as a function of jet momenta in LCFI VP.

Fit: Gompertz-like curve = a.exp(b.exp(c.z)) – a.exp(b) slow rise at 'beginning' and 'end' suits better than sigmoid functions

- Major background contribution is due to 2-photon events
 - \square AA \rightarrow bb (cc)
 - bb: 4 orders of magnitude higher cross section than signal (M_{sb} = 240GeV)
 - 3 orders when sbottom mass is 210GeV
 - Ideally could be perfectly supressed using e.g. distance in η - ϕ plane:

 ΔR_{bb} separation for b-jets from background is always above π at the parton level

Background issues

- Imperfect event reconstruction leaks background events to dR < π region</p>
 - ☐ Even tiny leakage has devastating effects due to high cross section.

Current Status and Next Steps

- Cut optimisation for signal selection
 - ☐ Larger mass split and lower sbottom masses OK
 - However, small mass split and high sbottom mass require additional information
 - ...such as electron/positron veto from very forward regions.
- Install and run CalcHep on 64-bit machine
 - ☐ To simulate 2-photon background properly
 - done with equivalent photon approximation so far

Summary

- LCFI vertex package is a mature software package used in ILD and SiD detector concepts.
- Its application to 6-jet ZHH (SiD) events looks very promising
 - existing results on Higgs self-coupling may be improved.
- It is used in sbottom analysis indirectly (so far)
 - ☐ Very challenging due to softness of these events

There are more analysis within the LCFI collaboration under way I have not covered in this talk (e.g. tt, stau).

Thank you for attention...