

Performance Study of TU-TPC Prototype Using Cosmic-ray

Tsinghua University TPC group
CDC group: » KEK
» Saga University

Yulan Li Tsinghua University

Scheme of TU-TPC prototype

Readout detector: triple-GEM, CERN standard GEM foils, $10 \text{ cm} \times 10 \text{ cm}$; Drift length: 50 cm

High voltage distribution

The prototype: photograph

Prototype: readout pad

Readout pad: size, 9.5 mm \times 1.5 mm (Pitch: 10 mm \times 1.6 mm), staggered

10 x 62 pads placed, only 10 x 32 pads read out due to the limitation of electronic channel number.

Tutan Li, Tsingnua Uni., TILCOO, 5-0 Waren, 2000, Senuar, Japan

Whole system

....

TU-TPC Studies @ KEK

- Cryo center, KEK
- Nov.29 Dec.25, 2007
- B=1T
- Analysis package: DoubleFit
- Test conditions:

Some modification:

- 1. cosmic-ray trigger system:
 - Large crystal: 50 cm ×15 cm
 - PMT: fine mesh, R5924
- 2. R_GEM moved outside of chamber

Gas	V _{GEM} (V)	E _{drift} (V/cm)	Garfield Simulation Value		
			V _{drift} (cm/µs)	$C_d (\mu m / \sqrt{cm})$	
P10	370	134.6	-5.5	129	
P10	370	122.1	5.4	122	
Ar:Iso:CF ₄ =94:3:3	265	145.2	5.4	80.3	
Ar:Iso:CF ₄ =94:3:3	260	123.5	4.7	81.8	

TU-TPC Studies @ KEK (Cont.)

Pad Response

- Pad Response: the average fraction of charge falling on a given pad, as function of the distance between the track and the pad center for different z regions

Middle 6 rows are used in the following analysis

Transverse Diffusion Constant C_D

C_D-Comparison

x resolution – P10 Gas

Yuran Li, Isingnua Uni., HILCOO, 5-0 march, 2000, Schuar, Japan

500

\mathbb{R} x resolution – Ar:Iso:CF₄=94:3:3 Gas

Pad response ~ Hodoscope

	Pad resp	onse	@ z _{drift} =0	Diffus	ion in GEM de	etector
Theoretical: $\sigma_{PR}^{2}(0) = \frac{w^{2}}{12} + C_{D,GEM}^{2} \times Z_{GEM}$						
In analysis: $\sigma_{PRF}^{2} = \sigma_{PR}^{2}(0) - \frac{12}{12}$						
	Gas	V _{GEM} (V)	$\sigma_{\rm PR}(0)$	$\sigma_{_{PRF}}~(\mathrm{mm})$	$C_{D,GEM}\sqrt{3\times0.1}$	
			(mm)	Measurement	Analytical fit	(mm)
	P10	370	0.514	0.226	0.227	0.273
		370	0.484	0.145	0.147	0.273
	Ar: Iso: CF ₄ =94:3:3	265	0.485	0.149	0.147	0.219
		260	0.505	0.205	0.207	0.219

What happens if the above two values are different?

If diffusion is too small, the hodoscope effect will be more obvious.

We need defocus the electron in readout detector.

Pad response ~ Hodoscope (cont.)

Pad response ~ Hodoscope (cont.)

N_{eff}-Comparison

• TU-TPC result (B=1T)

Gas	Ednift	VGEM	N _{eff}	N _{eff}
	(V/cm)	(V)	(H=10 mm)	(rescaled to H=6.3 mm)
P10	134.6	370	26.8	16.9
	122.1	370	34.2	21.6
Ar: Iso: CF ₄ =94:3:3	145.2	265	38.5	24.2
	123.5	260	23.2	14.6

MP-TPC result

(B=1T, Ar:Iso:CF₄=94:3:3)

E[V/cm]	N _{eff}
80	23±9
100	2 ±
120	25±12
35	24±12
150	21±7

Ref: http://www-hep.phys.saga-u.ac.jp/ILC-TPC

TU-TPC studies @ KEK (B = 1T) shows:

- $_{\texttt{D}}$ Resolution can be as good as 100 μm @ Z \approx 100 mm
- Measurement points fit the analytical formula very well
 - The analytical formula was confirmed again
 - Hodoscope effect ~ Pad response
 - Help us to understand MPGD-TPC more deeply
- \square For C_D:
 - For P10, a little larger than the simulation values
 - For Ar:Iso:CF₄, quite larger than simulation, same as MP@KEK test
- \square For N_{eff}:
 - More study are need
 - ? $N_{eff} \sim V_{GEM}$, we are expecting larger N_{eff} for larger V_{GEM}

- The prototype is setting up again in Tsinghua
- More studies will be given in a quieter condition

But without magnetic field

