

The LCTPC Large Protoype at the DESY Testbeam

Klaus Dehmelt DESY TILC08 Sendai March 04, 2008

LCTPC Collaboration

Performance goals and design parameters for a TPC with standard electronics at the ILC detector

Size (LDC–GLD average)	$\phi = 3.6 \text{m}, \text{ L} = 4.3 \text{m}$ outside dimensions	
Momentum resolution (B=4T)	$\delta(1/p_t) \sim 10 \times 10^{-5}/\text{GeV/c TPC only}; \times 0.4 \text{ incl. IP}$	
Momentum resolution (B=4T)	$\delta(1/p_t) \sim 3 \times 10^{-5}/\text{GeV/c} \text{ (TPC+IT+VTX+IP)}.$	
Solid angle coverage	Up to at least $\cos \theta \sim 0.98$	
TPC material budget	$< 0.03 X_0$ to outer fieldcage in r	
	$< 0.30 X_0$ for readout endcaps in z	
Number of pads	$> 1 \times 10^6$ per endcap	
Pad size/no.padrows	$\sim 1 \mathrm{mm} \times 4\text{-}6 \mathrm{mm} / \sim 200$ (standard readout)	
$\sigma_{\text{singlepoint}}$ in $r\phi$	$\sim 100 \mu m$ (for radial tracks, averaged over driftlength)	
$\sigma_{\text{singlepoint}}$ in rz	$\sim 0.5 \text{ mm}$	
2-hit resolution in $r\phi$	< 2 mm With MPGD	
2-hit resolution in rz	$< 5 \mathrm{mm}$	
dE/dx resolution	< 5 %	
Performance robustness	> 95% tracking efficiency for all tracks–TPC only)	
(for comparison)	(> 95% tracking efficiency for all tracks–VTX only)	
	> 99% all tracking[13]	
Background robustness	Full precision/efficiency in backgrounds of 1% occupancy	
	(simulations estimate $< 0.5\%$ for nominal backgrounds)	
Background safety factor	Chamber will be prepared for $10 \times \text{worse backgrounds}$	
	at the ILC start-up.	

March 04, 2008 TILC08 Sendai

MPGD Based TPC

100

ΪĻ

MPGD Based TPC

March 04, 2008 TILC08 Sendai

ilC

MPGD Based TPC

D. Peterson, Cornell

of ILC TPC endplate

March 04, 2008 **TILC08** Sendai

ΪĹ

➢ Gas amplification systems

LCTPC Design

Endplate

- ➢ Fieldcage
- Chamber gas
- Space charge
- Non uniform fields
- Calibration and alignment
- Backgrounds and robustness

Demonstration phase

LCTPC Phases

- Small prototype
- Consolidation phase
 - Large prototype
- Design phase
 - Engineering design

→ Consolidation phase

• Large prototype

March 04, 2008 TILC08 Sendai

ΪĹ

- Build and operate a "Large Prototype LP"
- First iteration of TPC-design details of the LCTPC can be tested
- Larger area readout can be operated
- Tracks with a large number of measured points are available for analyzing correction procedures
- Tasks have been divided into WorkPackages (WP)

- First step towards LC TPC
- Field cage (FC) as EUDET project
- Serves as infrastructure for different readout structures (GEM, MicroMegas)
- First use in KEK-PCMAG at DESY-II test beam

Silicon envelope

Length: 610 mm; Diameter: inner 720 mm, outer 770 mm

Composite material

Layers of GRP and NOMEX honeycomb

Fieldstrips

LP-TPC FC

➢ Kapton, coated with Cu-strips

Divider chain with SMD resistors

90 V between neighboring strips, i.e. E_{drift,max} = 320 V / cm

LP-TPC FC Field Strips

LP-TPC FC

Radiation Length: 1.31% of X₀

ΪĹ

LP-TPC Endplates

Interchangeable amplification/readout structure

MPGD MicroMegas

MicroMeshGaseousStructure (Micromegas): micromesh sustained by 50 µm pillars, multiplication between anode and mesh; one stage

Multiplication

p=140 μm D=70 μm

MPGD GEM

GasElectronMultiplier (GEM): 50 μm Kapton foil, each side covered with 5 μm Cu clad; multiple stage

March 04, 2008 TILC08 Sendai

IL

Magnet PCMAG at DESY

ilC

"Inhomogenous" B-Field \Rightarrow Scan TPC at various regions

P. Schade, DESY

Si-Envelope

Sensors

- first setup: only 768 channels can be read out
 - \succ the readout sensitive area is reduced to 38,4 x 38,4 mm²
 - (only the intersecting readout area of the two modules on top of each other is interesting)

 \Rightarrow Need for a sophisticated stage system

Charge sensitive readout-electronics, equipped with chargeto-time conversion circuit and multi-hit TDC for each channel

- Based upon ALTRO chip (ALICE)
- > 10k channels
- Programable charge amplifier
- 10-bit 40 MHz ADC

- Components are being collected and assembled
- FC Cathode Anode expected in April
- First amplification panel (MicroMegas) expected in April
- Commissioning will start in April/May
- Commissioning / Calibration with Cosmic Muon Trigger Setup
- ALTRO electronics available in May
- GEM amplification panel(s) available in August
- DESY II testbeam available in September 2008
- LP is under way

Large Prototype R&D			
Device	Lab(years)	Configuration	
$\text{LP1}{\rightarrow}1.5$	Desy/Eudet(2007-2009)	Fieldcage $\oplus 2$ endplates:	
		GEM+pixel, Micromegas+pixel	
<u>Purpose:</u> Test construction techniques using 10000 Alice/Eudet channels,			
demonstrate measurement of $6 GeV$ beam momentum over $70 cm$ tracklength,			
including development of corrections procedures			
LP2	Fermilab/Eudet(2010-2011)	$Fieldcage \oplus endplate:$	
		GEM, Micromegas, or pixel	
<u>Purpose:</u> Prototype for LCTPC including gating and other options,			
demonstrate measurement of $100 GeV$ beam momentum over $70 cm$ tracklength, and in jet evironment, test prototype LCTPC electronics			

ilC

•

TPC Prototype

Track Point Resolution measurements with MicroMegas

without and with resistive anode

March 04, 2008 TILC08 Sendai

IL

TPC Prototype

Track Point Resolution measurements with GEMs

120 μ m and 180 μ m for drift distances \leq 600 mm

March 04, 2008 TILC08 Sendai

IIL

- TPC with ASIC readout
- MediPix2/TimePix state of the art readout
- Initial "proof-of-principle" tests

Medipix2/TimePix similarities

- Pixel size 55µm, arranged in a 256x256 Matrix
- > dimensions of the sensitive area: 1,4x1,4cm²
- Used equalized and calibrated chip with lower threshold of
 - Medipix2 990 er
 - ≻ TimePix ≠ 700 e

Cosmic Muon Setup

March 04, 2008 TILC08 Sendai

ilc

