Electron Transmission Measurement of GEM Gate

Introduction
Motivation
Experimental Setup
Method of Measurement
Measured Transmission
Optimization
Comparison to simulation
Summary

Hirotoshi KUROIWA
(Saga Univ.)
Collaboration with
KEK, TUAT, Kogakuin U,
Kinki U, Saga U

TILC08 3-6 Mar. 2008, Sendai, Japan

Introduction

- Gating for LC-TPC
 - TPC has to take data for a whole train (≒1msec)
 - If we have imperfect gating device, locally dense ions produce non-uniform E field
- Gating device is necessary for GEM module at LC-TPC
 - Gating device ⇒ wire, micromesh, GEM
 Dead region due to the frame to support wires
 Change E_D
 Local change of E at GEM gate

Motivation

- GEM Gate
 - Ion feedback < 10⁻⁴ at reverse bias (by sim.) ← O.K.
 - Electron transmission eff. is important
 - More N_{eff} is better for resolution

$$\sigma^2 = \sigma_0^2 + \left(C_D / \sqrt{N_{eff}} \right)^2 z$$

- Electron transmission measurement of GEM gate
 - w/wo B field
 - Systematic study of transmission
 - Comparison simulations with measurements

Experimental Setup

- Ar:isoC₄H₁₀ (90:10)
- B = 0 and 1T (at KEK C.C.)
- Using 3 kinds of GEM

Gate GEM	Standard	Thin	Thin - Wide
Insulator Thickness	50[µm]	25[µm]	25[µm]
Hole diameter	70[µm]	70[µm]	90[µm]
Cu thickness	5[µm]		
Hole pitch	140[μm]		
Insulator	polyimide		

Method of Measurement

Electron transmission efficiency

Ratio of 2 to 1

2conversion at drift region

Electron loss by Gate

1 conversion at transfer region

No effect by Gate

(ie. trans. eff. = 1)

 $E_D = 0[V/cm]$

Low rate because transfer region is far from source

Noise and

Cosmic-ray

scale decided by Log gaussian

Signal charge spectrum Gate

10_{mm}

24.8mm

region E_{τ} =2.1[kV/cm]

Transfer

⁵⁵Fe

Drift

region

1.5mm $E_{1}=3.15[kV/cm]$ 1mm

Peak position

Nominal $E_D = 50[V/cm]$ $E_T = 300[V/cm]$

Eh[V/cm]

- GEM structure
 - Thinner GEM with larger holes is better for transmission

Thinner ⇒ transmission increase

Larger hole ⇒ # of electrons into the hole increases

Higher Eh ⇒ area of penetrating field line is narrower and some electrons return to GEM electrode by diffusion

Nominal $E_D = 50[V/cm]$ $E_T = 300[V/cm]$

Eh[V/cm]

GEM structure

Higher Eh ⇒ area of penetrating field line is narrower and some electrons return to GEM electrode by diffusion

Nominal $E_D = 50[V/cm]$ $E_T = 300[V/cm]$

Eh[V/cm]

B field dependency

High B field ⇒ Electrons move along B field due to lorentz angle,

of electrons into the hole decreases

hole – Data of 0 and 1T

Black: arrived at electrode are not so big difference

Nominal E_T=300[V/cm]

- E_D dependency
- Lower E_D is better for transmission
 Ratio of E_D and Eh
 # of field line to the GEM electrode increases at

Nominal $E_D = 50[V/cm]$

 Higher E_⊤ is better for transmission Ratio of E_{τ} and Eh

Area of penetrating field line is narrower at lower E_⊤ and some electrons return to

50um,phi70um 25um,phi70um 25um, phi90um thin-wide electron 9.0 4.0 thin 0.2 standard 50um,phi70um GEM electrode by diffusion 1 0.8 25um, phi70um 0Tthin-wide Et is E field at transfer electron 9.0 9.0 region thin 0.2

Short Summary of Results

Electron transmission becomes better

```
- at thinner GEM with larger holes

- at lower E_D can not change

- at higher E_T can not change

E_D and E_T freely

because of V_D

and C_D
```

Optimization the structure of GEM gate at higher B

Optimization by Simulation

E field calculation : Maxwell3D

Electron drift sim.: Garfield

Electron transmission efficiency = 0.71

Studying possibilities to produce very thin and wide hole GEM

Optimized setup

```
default
```

Condition gas=Ar-CF4(95:5) $E_D=150[V/cm], E_T=300[V/cm]$ B=3[T]GEM insulator thickness 50[um]electrode thickness 5[um]hole diameter 100[um]hole pitch 140[um]

Condition gas= $Ar-CF_4$ -iso C_4H_{10} (94:5:1)

 $E_{\rm D} = 120[{\rm V/cm}], E_{\rm T} = 300[{\rm V/cm}]$

B=3[T]

GEM insulator thickness 12.5[um]

electrode thickness 1[um]

hole diameter 100[um]

hole pitch 140[um]

Comparison to Simulation

- B = 1T
 - Good agreement with sim.
- B = 0T
 - Not similar even in behavior
 - Sim. mayhave problemat 0T case ?

Summary

- Electron transmission eff. of GEM gate have been measured w/wo B field
 - Transmission becomes better at thinner GEM with larger holes w/wo B field (25 μ m-thick, ϕ 90 μ m)
 - Max. transmission eff. > 50 % at B = 1T

$And \cdots$

Studying to produce 12.5 μ m-thick and ϕ 90 μ m GEM At other gas mixtures and higher field

Simulation

Collection eff.

- Electron move المحادثة المح

seems reasonable

0.2

0.2

1000

2000

3000

Extraction eff.

- Behavior of $0^{\frac{1}{16}}$ seems to be different from with B

6000

Eh[V/cm]

of e⁻ arrived at hole

of drift electrons

of e went out of hole

of e⁻ arrived at hole

4000

Collection eff.
of field line go to GEM
electrode increases at
lower Eh

Area of penetrating field line is narrower at higher Eh and some electrons return to GEM electrode

000 6000by diffusion