SiD

http://silicondetector.org

Philip Burrows

John Adams Institute Oxford University

Thanks to: Marco Oriunno, Marcel Stanitzki, Harry Weerts

Outline

SiD overview

ullet

- Outline of SiD subsystems: VXD + tracker ECAL HCAL muon system forward region machine-detector interface issues
- Preparing for SiD Lol

SiD session Wednesday 16.00

- Preparing for SiD Lol
- Vertex and tracking
- ECAL and KPIX
- HCAL
- PFA and bench-marking
- Discussion

SiD Design Philosophy

Particle flow calorimetry will deliver the best possible performance

- Si/W is the best approach for the ECAL and digital calorimetry for HCAL
- Limit calorimeter radius to constrain the costs

Boost B-field to maintain BR²

- Si tracking system for best momentum resolution and lowest mass
- Pixel vertex detector for best pattern recognition
- Keep close watch on costs

Detector is viewed as single fully integrated system, not just a collection of different subdetectors

The SiD Detector Concept

Vertexing and Tracking

Tracking system conceived as integrated optimized detector

- Vertex detection
 - Inner central and forward pixel detector
- Momentum measurement
 - Outer central and forward tracking
- Integrated with calorimeter
- Integrated with forward systems

Detector requirements (vertex)

- Spacepoint resolution: < 4 μm
- Impact parameter resolution: $\sigma_{r\phi} \approx \sigma_{rz} \approx 5 \oplus 10/(p \sin^{3/2} \vartheta)$
- Smallest possible inner radius
- Momentum resolution 5 10⁻⁵ (GeV⁻¹)
- Transparency: ~0.1% X₀ per layer
- Stand-alone tracking capability

The Vertex Detector

5 Barrels

- $-R_{in} = 14 \text{ mm to } R_{out} = 60 \text{ mm}$
- 24-fold ϕ segmentation
- 12.5 cm each
- All barrel layers same length

2 x 4 Forward Disks

radius increases with Z

Low material, low power design

The Outer Tracker

5 layer Si-Tracker

5 barrel cylinders

- φ readout only
- 10 cm z segmentation

5 forward double disks

measure r and φ
 Material budget 0.8%
 X₀/layer

Tracker Mechanics

Sensor Tiles for barrel Kapton cables for signal routing Lightweight space frame

Tracking Performance

Full simulation

Vertex detector seeded pattern recognition

(3 hit combinations)

Event Sample

- ttbar-events, \sqrt{s} = 500 GeV
- background included

11

EM Calorimeter (ECAL)

PFA requires high transverse and longitudinal segmentation and dense medium

Choice: Si-W <u>can</u> provide very small transverse segmentation and minimal effective Molière radius

Absorber	X₀ [mm]	R _M [mm]
Iron	17.6	18.4
Copper	14.4	16.5
Tungsten	3.5	9.5
Lead	5.8	16.5

- Maintain Molière radius by minimizing the gap between W plates
 - ~ 1mm Si detector gaps \rightarrow Preserve R_M(W)_{eff}= 12 mm
- Requires aggressive integration of electronics with mechanical
- Pixel size ~ 4 x 4 mm²
- Energy resolution ~ 15%/ \sqrt{E} + 1%

The Si-W ECAL

The hadron calorimeter (HCAL)

Role of hadron calorimeter in context of PFA is to measure neutrals and allow "tracking" i.e. matching of clusters to charged particles.

Number of technology choices:

Absorber

- Tungsten/Steel/Copper

Readout

- Digital (RPC/GEM/micromegas)
- Analog (Scintillator SiPM)

High granularity reqd. for PFA; ECAL/HCAL integrated unit

Example of response

Philip Burrows

ACFA Workshop, Sendai 3/03/08

SiD PFA performance: e⁺e⁻→qqbar(uds) @ 91GeV

SiD HCal Engineering Design

Guarino (ANL) Geffroy (LAPP)

Current Baseline HCAL

- Digital calorimeter, inside the coil
 - R_i = 139 cm, R_o = 237 cm
- Thickness of 4 λ (thin)
 - 38 layers of 2.0cm steel
 - 1 cm gap for active medium

- Readout (one of choices)
 - RPC's as active medium (ANL)
 - 1 x 1 cm**2 pads

All other options being explored and pursued (eg. R&D in CALICE):

- Gas based: RPC, GEM and micromegas (single bit /multibit)
- Scintillator based protoypes, cosmic + beam test results ... Philip Burrows 18 ACFA Workshop, Sendai 3/03/08

HCAL prototype R&D

Solenoid

Design is solenoid with B(0,0) = 5T (not done previously)

- Clear Bore Ø ~ 5 m; L = 5.4 m: Stored Energy ~ 1.2 GJ
 - For comparison, CMS: 4 T, Ø = 6m, L = 13m: 2.7 GJ

Full feasibility study of design based on CMS conductor:

Start with CMS conductor design, but increase winding layers from 4 to 6

- I(CMS)= 19500 A, I(SiD) = 18000 A; Peak Field (CMS) 4.6 T, (SiD) 5.8 T
- Net performance increase needed from conductor is modest

Philip Burrows

ACFA Workshop, Sendai 3/03/08

Field simulation

Muon System

Muon System Baseline Configuration

- Octagon: 48 layers, 5 cm thick steel absorber plates
- Six planes of x, y or u, v upstream of Fe flux return for xyz and direction of charged particles that enter muon system.
- instrumented gaps
- ~1 cm spatial resolution

Issues

- Technology: RPC, Scin/SiPMs, GEMS, Wire chambers
- HCAL punch-through: is the muon system needed as a tail catcher?
- How many layers are needed (0-23)? use HCAL ?
- Position resolution needed?

Machine-Detector Interface

A layout of the SiD Forward Region is currently under discussion

Philip Burrows

ACFA Workshop, Sendai 3/03/08

SiD LumiCal and BeamCal

LumiCal inner edge	≈36mrad about outgoing
LumiCal outer edge	≈113mrad about 0mrad
LumiCal fiducial	≈46-86mrad about outgoing
BeamCal outer edge	≈46mrad about outgoing
LumiCal	30X ₀ Si-W
BeamCal	30X ₀ rad-hard Si,diamond

Developing engineered solutions

QD0 support in the door

2m Door opening Procedure, on the beam

2m Door opening Procedure, on the beam I

2m Door opening Procedure, on the beam II

2m Door opening Procedure, on the beam III

Integration of the QD0 cryoline

Integration of the QD0 cryoline

Integration of the QD0 cryoline

Push-pull: SiD assumptions

- Having two detectors on beamline 'permanently', and sharing the luminosity, i.e. two IPs, is clearly the ideal solution for physics
- Luminosity delivery to two IPs, with fast switchover between IPs, is not possible
- Two detectors in push-pull mode will:
 - save cost of one BDS
 - increase likelihood of two detectors from start
 - provide equal access to luminosity for both detectors

SiD statement on technical Issues

- Push-pull can probably be engineered to work
 - many technical issues will need to be solved
- Full access to offline detector is mandatory
- Best accomplished with self-shielding detectors
 - self shielding is technically feasible
- Mechanisms for moving detector should not reduce
 acceptance
- Need to align 'captured' beamline components independent of overall detector position

SiD: technical questions

- Can detector be engineered so magnetic field map remains invariant under detector in/out?
- Can tracking chamber alignment be restored without calibration runs (eg. with internal alignment system)?
- Can detector remain fully operable in 'out' position?
 - cosmic ray data-taking to maintain operability
- Can switchover time be made short enough?

SiD: sociological issues

- Need well defined procedure for scheduling swaps
- Machine luminosity must be shared equitably
- Period between swaps should be of order 1 month:
 - neither detector can gain significant lumi advantage in 1 period
- Switch-over time << running period

SiD surface assembly considerations (Breidenbach)

Solid Edge Model

Sequence of Operations

Detector subassembly construction & surface tests

- Octants of muon chamber instrumented barrel yoke, barrel Hcal, barrel Ecal
- Four sub-modules of EC return flux instrumented with muon chambers, donut Hcal, Ecal
- Tracker, vertex and FCAL packages

Surface Magnet test

- Assemble barrel support and the bottom 5/8 flux return octants
- Drop in coil & cover with remaining 3/8 octants
- Assemble two door legs and 4 360° (180 °?) plates of flux return
- Test magnet and disassemble

Lower detector chunks

- Reassemble lower barrel iron with supports below ground
- Load barrel HCAL and ECAL modules into coil cryostat via threaded beam
- Lower loaded coil package and capture with upper barrel yoke segments
- Depending on crane capacity
 - Lower fully assembled door
 - Lower door pieces, the last plate with the Endcap Ecal & Hcal, and reassemble

Tracker, VXD and FCAL installed below ground at end

'Surface assembly seems ok, but will require careful planning'

Summary

SiD is a silicon-centric design offering

- excellent vertexing and tracking precision
- new potential in calorimetry
- excellent muon identification

Complementary to other concepts

Many opportunities for new effort and expertise.
Tools and organization in place to support efficient development and to get started.
Great opportunity to explore ILC detector/physics.
Open to new ideas, collaborators, increased internationalization

http://silicondetector.org

Draft time line for the SiD Lol

First Pass Global Parameters 3/08 4/08 Freeze Global Parameters: First Pass Detector Design 6/08 Freeze Detector Design SubSystems Fully Specified Subsystem Technologies/Alternates Selected **Conceptual Designs Ready** 9/08 **GEANT4** Description Ready Performance Studies Ready **Benchmarking Studies Ready** 2/09 **Complete LOI Draft:** Collaboration Review and Comment 3/09 Final Edit of LOI 4/09 Submit LOI

Next SiD Workshop

Cosener's House, Abingdon, UK April 14-16 2008

http://hepwww.rl.ac.uk/sidmeetinguk/

Philip Burrows

ACFA Workshop, Sendai 3/03/08

Extra material follows

12mm Beam Pipe and VXD Detail

Support Tube for QDO and Frwd instrumentations

•The support tube provide an interface to the door to support for QD0,

•In addition provide the supports for the vacuum chamber, the beam instrumentation and the forward detectors

• Alternative option having sliding rail directly on the QD0 cryostat and cantilever from the Qd0 front the vacuum and detector instrumentations. Actuators directly on the door.

Concept which does not rely on self-shielding detector

M-Tons	Stainless HCAL Radiator		Tungsten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

M-Tons	Stainless HCAL Radiator		Tungsten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

M-Tons	Stainless HCAL Radiator		Tungsten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

M-Tons	Stainless HCAL Radiator		Tungsten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

M-Tons	Stainless HCAL Radiator		Tungsten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

M-Tons	Stainless HCAL Radiator		Tungsten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

Servicing Vertex Detector & Tracker

Detector open 3 m for off-beamline servicing Vertex detector can be removed / replaced.

Servicing Vertex Detector & Tracker

Detector open 2 m for on-beamline servicing

Ends of tracker and outer surfaces of vertex detector are accessible.

