Report on ttH Analysis

S. Uozumi (Kobe) R. Yonamine (GUAS) K. Fujii (KEK) Mar 2-7 2008 PhysicsWG meeting

Introduction

- Top Yukawa coupling is a fundamental parameter in the SM.
- Recent study shows that LHC seems to be very difficult to measure Yt.
- ILC is the only place to measure it (SLHC also?)
- NLO + Threshold effect of tt system + e⁺ polarization will significantly enhance the σ(e⁺e⁻ → ttH).
 - Born σ =0.074fb (including ISR and bremstrahlung effects)
 - Mh=120GeV, M_t^{1S}=180GeV, Ecm=500GeV and (P_{e-}, P_{e+})=(-0.9,0.0)
 - NLO σ =0.18fb
- Estimate sensitivity of Yt at the ILC first stage (Ecm~500GeV)
 - With Higgs mass of 120 ~ 200 GeV, region not well explored.

Event features

- Assume m_H=120 ~ 200 GeV
 - \rightarrow E_{thre} = 2*m_t+m_H = 470 ~ 550 GeV
- $\sigma(E_{thre} + \alpha) = O(0.1) \text{ fb} \rightarrow O(100) \text{ events with } 1000/\text{fb}$ - ~1fb with m_H=120GeV at cms=550GeV
- Decay
 - − ttH → bWbW (bb, WW or ZZ) → 8 or 10 fermions
 - High jet multiplicity
- Backgrounds
 - − ttg → ttbb will be the dominant source for $H \rightarrow bb$ channel
 - SM backgrounds like ttZZ, ttWW exists for heavier higgs.

Status

- Need to maintain signal generator with tt-system threshold enhancement -> done
- For BG study , event generation is done by MadGraph.
- Now trying quick detector simulation, reconstruction and cutting on kinematical quantities for BG rejection.

Event Display

- Very dense 8 jets event.
- Challenging for reconstruction.

Ecm=500GeV

MH=120GeV

 $ttH \rightarrow (bW)(bW)(bb) \rightarrow (bud)(bev)(bb)$ $ttH \rightarrow (bW)(bW)(bb) \rightarrow (bcs)(bcs)(bb)$ 6 jet 8 jet

Signal Generator

- Signal generator which includes tt mass thoreshold enhancement has been made .
- The generator is maintained on framework of GLD simulation software.

Beam Polarization for ttH

- Cross-section is calculated as a function of E_{cm} for P=(-1.0, 0.0), P=(1.0, 0.0) and P=(-0.8, 0.6) with M_h = 120 GeV and M_t = 170.9 GeV.
- $\sigma = 1.2$ fb for P=(-0.8, 0.6) and E_{cm}=500 GeV

Mass dependence

- Mass dependence of cross section is also calculated with P=(-0.8, 0.6).
- Need Ecm >550 GeV for M_h >170 GeV.

- Generated by Madgraph with different CMS energies.
- No selection is applied yet.
- At this level ttbb BG has comparable x-section with the signal.
- In the ttbb BG, ttg->ttbb is x2 larger than other ttbb BG.

Effect of beam polarization to BG

Summary

- e+e- -> ttH (H -> bb) Generator has been prepared.
- Electron and positron polarizations are very useful to enhance signal cross section.
 - σ = 1.2 fb for E_{cm}=500 GeV, P=(-0.8, 0.6) and M_{h}=120 GeV
- Cross sections of BG modes are calculated.
- Dominant BGs are ttg, ttZ, tt and WW.

Plans

- Generate full sets of signal and backgrounds.
- Pass the generator information to quick simulator.
- Try event reconstruction and calculate sensitivity.