Determination of Dark Matter Properties in the Littlest Higgs Model with T-parity

Masaki Asano (SOKENDAI)

Collaborator: E. Asakawa (Meiji-gakuin), S. Matsumoto, T. Kusano, Y. Takubo (Tohoku)

SM is the successful model describing physics below ~ 100 GeV. But,

Hierarchy Problem related to quadratic divergence to $m_h^2 = \frac{1}{m_0^2} + \frac{1}{\Lambda^2}$ correction the Higgs boson mass term.

□ Fundamental particle

The quadratic divergence has to be removed. \square SUSY

composite particle

Little hierarchy prob.

There is no fine-tuning problem, if $\Lambda \sim 1 \text{TeV}$ Experimental results require $\Lambda \gtrsim 5 \text{ TeV}$ LH R.Barbieri and A.Strumia ('00)

■ Dark Matter

SM is the successful model describing physics below ~ 100 GeV. But,

- Hierarchy Problem related to quadratic divergence to $m_h^2 = \frac{-----}{m_0^2} + \frac{------}{\Lambda^2}$ correction the Higgs boson mass term.
 - ☐ Fundamental particle

The quadratic divergence has to be removed. \Box

□ composite particle

Little hierarchy prob.

There is no fine-tuning problem, if $\Lambda \sim 1 \text{TeV}$ Experimental results $\rightarrow \Lambda \gtrsim 5 \text{ TeV}$ R.Barbieri and A.Strumia ('00)

■ Dark Matter

Existence of cold dark matter is established by WMAP.

http://map.gsfc.nasa.gov/

 $\Omega_{\chi}h^2 \sim \left(\frac{m_{\chi}}{1 \text{ TeV}}\right)^2 \sim 0.1 \quad \Box$ the dark matter should be included in physics beyond the SM at **TeV**

The Littlest Higgs Model with T-parity is a new possibility for physics at TeV. This model can solve the little hierarchy problem. Moreover, there are new particles (e.g. W_H , Z_H , ...) including a **DM** candidate (A_H).

We study the collider phenomenology of new particles in this model, and estimate the accuracy of extracted new particle mass (We mainly consider $e+e- \rightarrow W_H W_H$ process in this study). Using this result, we reproduce the DM relic abundance which can be compared with cosmological observations.

Plan

- Introduction
- Details of the Littlest Higgs model with T-parity
- Process and sample points
- Simulation results and cosmological connection
- summary

Littlest Higgs Model with T-parity

non-linear sigma model describing SU(5)/SO(5) symmetry breaking

gauge group
$$[SU(2)\times U(1)]^2 \longrightarrow SU(2)\times U(1) \longrightarrow U_{em}(1)$$

 $VEV f \sim O(1) \text{ TeV} \qquad \langle h \rangle$

To confirm the Littlest Higgs model with T-parity, We should measure the parameters f. We will measure f using $e^+e^- \to W_H^{-+}W_H^{--}$ in ILC.

New particles \rightarrow T-odd \longrightarrow Tark matter candidate Z_H

Allowed region for WMAP

■ Lightest T-odd particle: A_H

$$m_{A_H} \simeq \frac{g'}{\sqrt{5}} f$$

 \blacksquare A_H annihilates into W, Z

Relic density depends only on f & m_h

■ In each branch, m_h is determined by f.

Process & Sample Points

Which particle can produced at the ILC? \rightarrow It depends on VEV f.

- Direct production of A_H (e.g. e+e- $\rightarrow A_H Z_H$) will be possible in ILC.
 - □ Because AH is missing particle,
 it is slightly difficult to
 measure mA_H precisely.
 - Kusano san's talk
- $W_H W_H$ production (e.g. e+e- $\rightarrow W_H W_H \rightarrow WWA_H A_H$) will be possible in the area.

Which particle can produced at the ILC? \rightarrow It depends on VEV f.

■ Direct production of AH (e.g. $e+e-\rightarrow A_HZ_H$)

Kusano san's talk

WHWH production

(e.g. e+e-
$$\rightarrow$$
 W_HW_H \rightarrow WWA_HA_H)
will be also possible in the area

Qing-Hong Cao et. al. 0707.0877

we can measure the mAH precisely using the two standard weak gauge boson.

 $(W_H^{\pm} \to A_H + W^{\pm} \text{ with } 100\% \text{ branching ratio!})$

☐ In this region, Higgs mass is also small. Small Higgs mass region is also favored by EW Precision Measurements.

We focuse on WHWH process in 1 TeV ILC.

Our sample points

Mass spectrum

	Point I	Point II	Point III
f	580 (GeV)	660 (GeV)	740 (GeV)
m_h	$134 \; (GeV)$	$137 \; (GeV)$	152 (GeV)
$\Omega_{ m DM} h^2$	0.106	0.104	0.106
m_{A_H}	81.9 (GeV)	95.9 (GeV)	110 (GeV)
m_{W_H}	368 (GeV)	$421 \; (GeV)$	474 (GeV)
m_{Z_H}	369 (GeV)	422 (MeV)	474 (MeV)
m_{Φ}	440 (GeV)	513 (GeV)	640 (GeV)

- All sample points satisfy all experimental & cosmological constraints.
- Heavy gauge bosons turns out to be less than 500 GeV.
 - → It is possible to produce them in pair at the ILC.

Simulation at ILC

We have done the simulation using **CalcHep**. Because the **simulation shows end points clearly,** It allow us to extract the property of DM.

Integrated Luminosity: 500fb

From this E_W, we get

$$f = 656.1 [GeV]$$

 δ = 0.6% accuracy

DM mass is determine less than 2% accuracy.

[Model dependent]

Cosmological Impact

We reproduce the DM abundance from parameters which will be determined by ILC.

- Because DM mass and Higgs mass is determined precisely, the DM abundance is also determined precisely less than 2%.
- It is possible to consistency check of the model using PLANCK.

Summary

- Littest Higgs model with T-parity is one of attractive models for physics beyond the SM.
- From the **WMAP** observation, heavy gauge bosons will be copiously produced at the **ILC**.
- $e^+e^- \rightarrow W_H W_H$ is the best process to investigate the property of the DM predicted in the model.
- Simulation shows the clear edge in signal events, which allow us to extract the model parameters precisely.
- Results obtained from the collider experiments will be compared to those from astrophysical experiments
- DM abundance is determined precisely with uncertainty which less than 2%. It is possible to consistency check of the model using PLANCK.