Discriminating Spin Through Quantum Interference

Matthew Buckley U.C. Berkeley/IPMU with H. Murayama, William Klemm, and Vikram Rentala 0711.0364

1

Sendai 4/3/08

Beyond the SM

Suggest some new physics at \sim 1 TeV

Supersymmetry? Technicolor? Extra Dimensions?

Supersymmetry solves naturalness problem by introducing newparticles with opposite spin statistics to cut off loop corrections.

 Universal Extra Dimensions solves the problem by having a TeV-scaled extra dimension. That is, the Planck scale is the EW scale

$$M_{Pl}^2 = M^{2+d} (2\pi R)^d$$

SUSY vs. UED

- Both spectra contain `copies' of SM
 - SUSY has superpartners
 - UED has tower of Kaluza-Klein modes

New particles have similar interaction strengths:

 $W^{\pm}, Z, A \to \tilde{W}^{\pm}, \tilde{Z}, \tilde{A} (\tilde{\chi}_i^{\pm}, \tilde{\chi}_i^0)$ (SUSY) $\to W_1^{\pm}, Z_1, A_1, W_2^{\pm}, Z_2, A_2, \dots$ (UED)

Spin measurements may be the defining experimental difference

Spin at LHC/ILC

Most methods attempt to distinguish specific models Comparison of total cross sections: $\sigma_{SUSY} < \sigma_{UED}$ Not a measurement of spin Can look for KK>1 towers Could be too heavy for colliders, could be seeing non-minimal SUSY states Threshold scans at ILC The Both spinors and vector bosons have $\sigma \propto \beta$ Production or decay angular dependance Assumptions about t-channel, chiral couplings

Spin and Quantum Interference

Decay of particle with helicity h: Rotation about z-axis of decay plane implies $\mathcal{M} \propto e^{i J_z \phi}$ $J_z = \frac{(\vec{s} + \vec{x} \times \vec{p}) \cdot \vec{p}}{|\vec{p}|}$ $= \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} = h$

Spin and Quantum Interference

• If particle produced in multiple helicities, then $\sigma \propto \left| \sum_{matcharpoint} \mathcal{M}_{prod} \mathcal{M}_{decay} \right|^2$ $\mathcal{M}_{decay} = e^{ih\phi} \mathcal{M}_{decay}(h, \phi = 0)$ • Different helicity states interfere as they decay • The ϕ dependence of cross section allows us to determine what helicities interfered.

 $\sigma = A_0 + A_1 \cos(\phi) + \dots + A_n \cos(n\phi), \ n = 2 \times \text{spin}$

Coherent Sums and Kinematics

- Semi-leptonic decays, fully reconstructable
- Simulated OPAL data from 1997-2000:
 - $\circ \mathcal{L} = 682 \text{ pb}^{-1}$
 - Before cuts have
 3400 events
 available
 - 2450 events after cuts

Problem is that E_T, η cuts are not azimuthally symmetric about W-boson axis

Rotationally invariant cuts: require that leptons pass acceptance cuts for all rotations about the W-boson axis

This cut is ~~15% efficient

Problem is that E_T, η cuts are not azimuthally symmetric about W-boson axis

Rotationally invariant cuts: require that leptons pass acceptance cuts for all rotations about the W-boson axis

This cut is ~~15% efficient

Scalar vs. Spinor at ILC $e^-e^+ \rightarrow \tilde{\mu}_R^+ \tilde{\mu}_R^- \rightarrow \mu^+ \mu^- \tilde{\chi}_0^1 \tilde{\chi}_0^1$ $e^-e^+ \rightarrow \mu_{1R}^+ \mu_{1R}^- \rightarrow \mu^+ \mu^- B_1 B_1$

Many SM extensions have new particles charged under additional symmetry (R-parity for SUSY, T-parity for Little Higgs, Z₂ parity in extra-dim).

Lightest charged particle a good DM candidate but weakly interacting, stable, and invisible in detectors.

 $\to \not\!\!\!E_T, \not\!\!\!p_T$

Need to reconstruct $\phi_{1/2}$ distributions to measure A_0 , A_1 parameters

Minimal UED

- One extra dimension of radius R, compactified to S^1/Z_2
 - Quantized 5th dimension momentum provides tree level mass for KK modes:

$$m_n^2 = \frac{n^2}{R^2} + m_0^2$$

Requiring ψ_R , A_5 odd and ψ_L even under the Z_2 provides chiral fermions in the KK=0 level.

 ${\it @}$ Flavor universal boundary terms set to zero at scale Λ

Ightest KK=1 state stable: LKP (usually B_1)

Reconstruction of $\phi_{1/2}$

Assume masses of μ/B partners known.

4+4 unknown momenta
-4 measured p/
-4 mass relations

system specified up to a 2-fold ambiguity

 ${\it @}$ Use both solutions: true/false $\vec{p}_{\tilde{\mu}_R}$ to derive true and false values for ϕ_i

Mass Measurements at ILC

- Reconstruction assumes no mass/momentum measurement errors.
 - Known mass allows effective background cut via successful reconstruction
- Tracking resolution at ILC expected to have error $\Delta p_T/p_T = 5 \times 10^{-5} (p_T/{\rm GeV})$

	$\Delta m_{cont.} (\text{GeV})$	$\Delta m_{thres} (\text{GeV})$
\tilde{e}_R	0.2	0.05
\tilde{e}_L	0.2	0.18
$\tilde{ u}_e$	0.1	0.07
$ ilde{\chi}^0_1$	0.1	0.05

Scalar vs. Spinor at ILC \odot Assume $\sqrt{s} \leq 1~{ m TeV}$, $L=500~{ m fb}^{-1}$ Out on lepton and missing energy $\eta \leq 2.5$ Take two possible spectra: a typical SUSY and a typical MUED spectrum. Since mass of SM partners assumed known, we 'fake' a MUED model with SUSY spectrum, and vice versa.

SUSY SPS3

m_0	$90 \mathrm{GeV}$
$m_{1/2}$	$400 \mathrm{GeV}$
A_0	0
aneta	10
μ	> 0

MUED

R^{-1}	$300 \mathrm{GeV}$
Λ	$20R^{-1}$
m_H	$120 \mathrm{GeV}$

15

Scalar vs. Spinor at ILC

SPS3

$ ilde{\chi}_1^0/B_1$	$161 { m GeV}$
$ ilde{\mu}_R/\mu_{1R}$	$181 { m GeV}$
$ ilde{\mu}_L/\mu_{1L}$	$289 { m GeV}$

$ ilde{\chi}_1^0/B_1$	$301.5 { m GeV}$
$ ilde{\mu}_R/\mu_{1R}$	303.3 GeV
$\widetilde{\mu}_L/\mu_{1L}$	309.0 GeV

Azimuthal Distributions

Sum ϕ_1 and ϕ_2 distributions.

 $\sqrt{s} = 370~{
m GeV}$

17

Azimuthal Distributions

SPS3

MUED

Fit to $\sigma = A_0 + A_1 \cos \phi + A_2 \cos 2\phi$

Effects of Cuts on $e^-e^+ \rightarrow \mu_{1R}^+ \mu_{1R}^- \rightarrow \mu^+ \mu^- B_1 B_1$

MUED uncorrected

MUED corrected

Subtract off effect of cuts on flat distribution to correct for detector effects

Conclusions

Quantum interference between helicity/ polarization states can serve as a fully model independent probe of spin in an event

We can use this method right now with data already on tape.

A linear collider should be capable of distinguishing scalars from higher spins

Conclusions

 Need better understanding of how to correct for cuts and false solutions
 Necessary to distinguish higher spin states

Longer decay chains may remove 2-fold ambiguity.

At LHC, long decay chains would allow for 2-fold reconstruction; large # of events should allow for direct spin measurements.