

Pressure and Venting Tests

Lutz Lilje 4.3.2008 Slides based on a summary by K. Jensch (DESY)

Lutz Lilje, DESY, TILC08

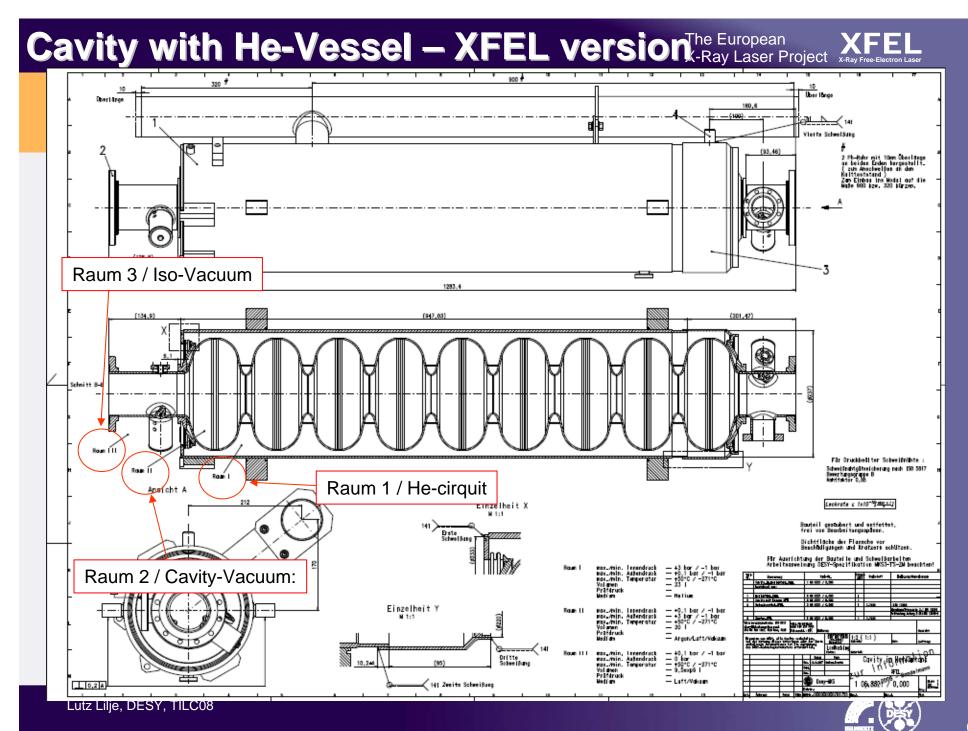
Motivation for the Module Crash Test

- Test has to fulfill several objectives
- Main Objectives
 - Demonstrate compliance with high pressure vessel codes
 - In other words: Demonstrate that even in case of a major problem (e.g. accident) occurs - the problem remains contained to the cryostat
 - Crosscheck of numerical calculations for pressure drops
 - Demonstrate that selected safety measures are effective
 - » E.g. safety valves positioned correctly, relief valve pressure limits correct etc.
- Additional Objectives
 - Crosscheck interlock philosophy
 - Understand which parts of the module would really need to be replaced (cavities, couplers, motors, piezos etc.)
 - Improve understanding of interplay of the various components
 - Develop simple series pressure tests

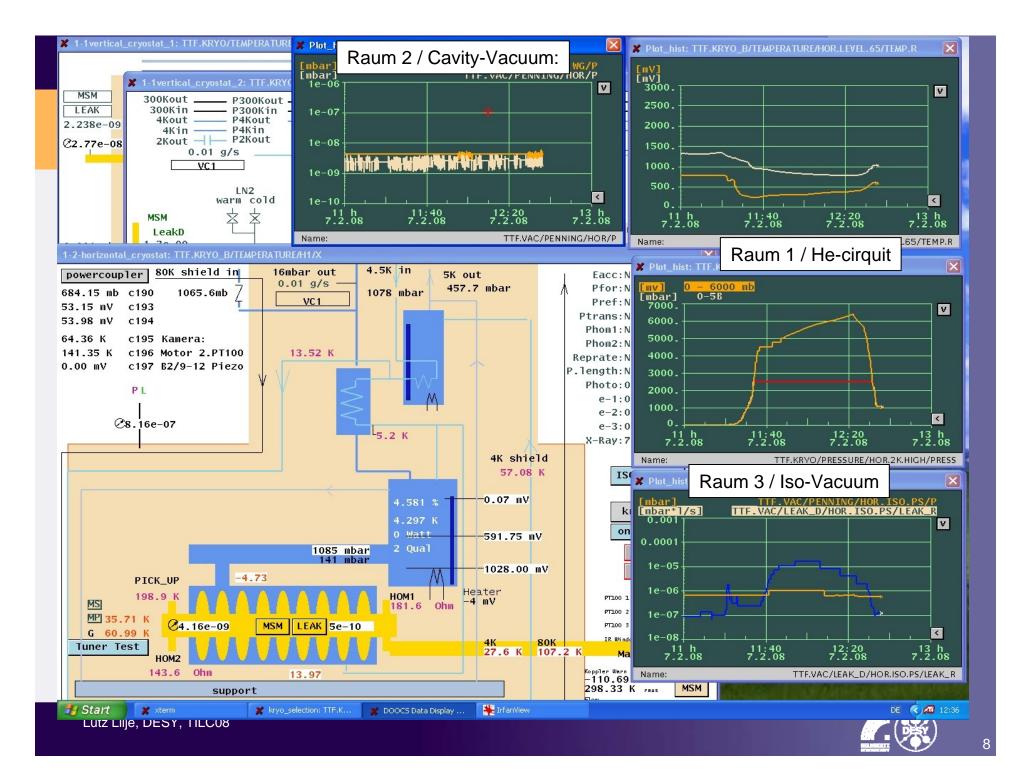
Sequence of tests in Module Crash Test

Venting	Condition	Cavity	Coupler	Tuner	Сгуо	BPM	Vacuum	Remark
lso slow	2K, 30 mbar RF Off			Check Piezo	Measure losses		Measure	Helium Rate and Level tbd.
	2K, 30 mbar RF Off		Perfomance Reprocessing		Measure losses		Measure	Nitrogen Rate and Level tbd.
	RF Off	Performance Detuning Reprocessing			Measure losses		Measure	Nitrogen Rate and Level tbd.
		Performance Detuning Reprocessing	Ceramic rupture		Pressure increases, He Pipe rupture, MLI integrity	Ceramic rupture	Measure Leaks	Controlled, Rate tbd, Nitrogen
	RFOff	Performance Detuning Reprocessing	Ceramic rupture	Tuner motors	Pressure increases He Pipe rupture MLI integrity	Ceramic rupture	Measure Leaks	Catastrophic, Air
	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture		Measure Leaks	Controlled, Rate tbd, Nitrogen
	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Measure Leaks	Controlled, Rate tbd, Nitrogen
	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Measure Leaks	Catastrophic, Air
	2K, 30 mbar RF On	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Measure Leaks	Controlled, Rate tbd, Nitrogen
fast IV	4.5K, 1.7 bar, RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Leaks	Air, Need to block 2 safety valves (VD1R130 and VS1R90)

Motivation for Pressure ant Venting tests in CHECHIA

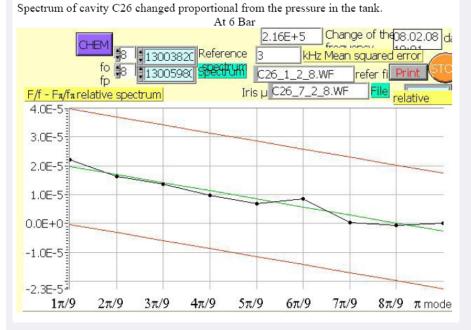

- Safety regulations are taking into account the current 'wisdom' included in simulations
 - Based on several worst case scenarios
 - Benchmarking in operating conditions (cold modules) of these simulations is needed
- In parallel, development of a simple pressure test for the series is highly desirable
 - Pressure test of the He vessel to simplify overall pressure test for the XFEL accelerator system
 - » In my words: If test on individual units e.g. cavity is successful, lower pressure on the He system for XFEL is required.
- Venting of the coupler vacuum
 - Preparation for crash tests
 - » would like to escalate the desaster level in a reasonable way to maximise information from test
 - Check whether ceramic breaks in a fast vent with nitrogen

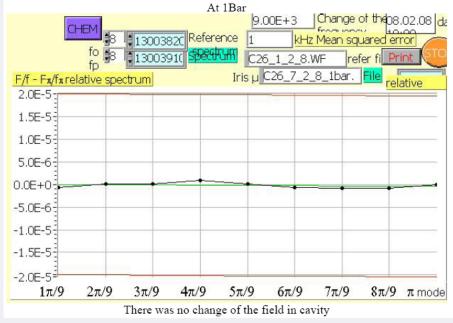
- Test at 2K with max. pressure of 6.1bar
 Safety authority took part
- Two tests at 295K up to 6.2bar
 - First warm test canceled because a leak in He circuit of the cryostat
- 1 Test at 2K a. 4K
 - -Check the field flatness and tuning


First Cold Test at 2K

- Test procedure:

- Cavity stable at 2K/31mbar fr off-resonance
- Pressure on 2K circuit up to 4,0bar
- Cavity for 1/2h under pressure
 - during this time the pressure go up to 6,1bar
- No increase of pressure or leak rate
 - higher leak rate due to surface desorption no leak!
- Pressure on 2K circuit down to 1,0bar
 - Frequency and field flatness checked at different pressures
 - Frequency identical at 1,0bar before and after the pressure test.
 - No impact at the filed flatness
 - No plastic deformation at the Cavity, Tunersystem or He-Vessel




The European

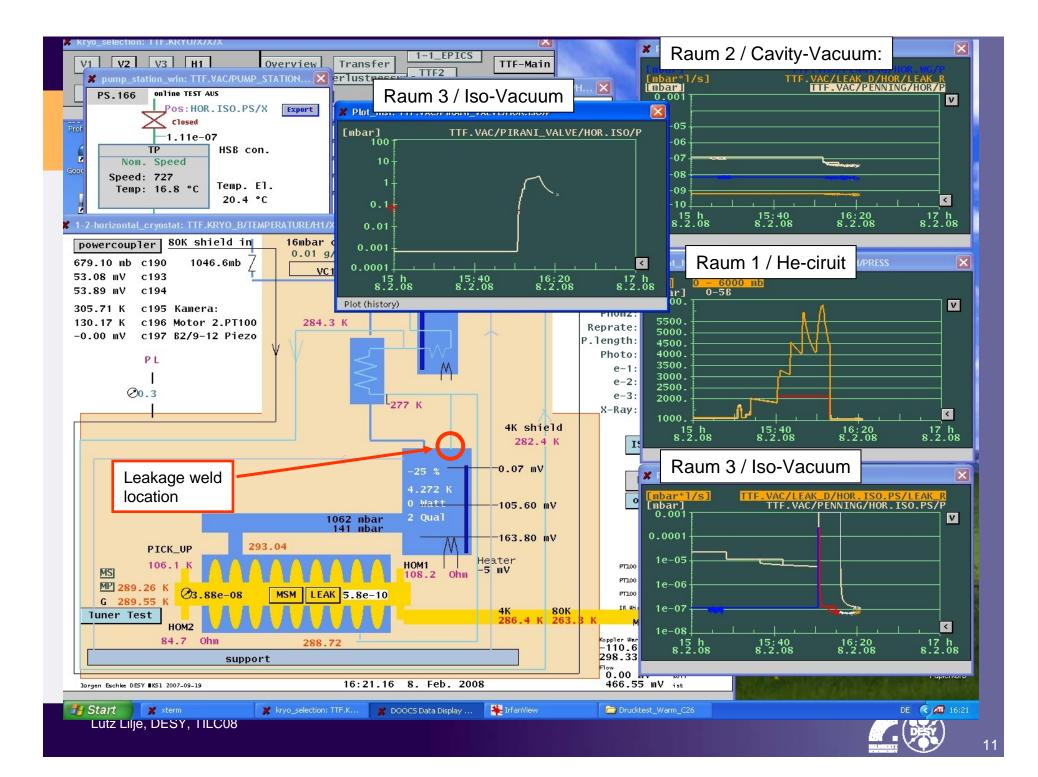
Cavity Spectrum

2K at 6bar

2K at 1bar

9

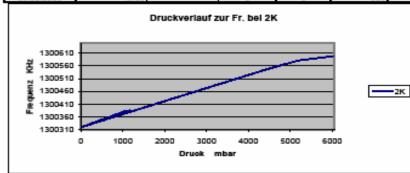
Lutz Lilje, DESY, TILC08

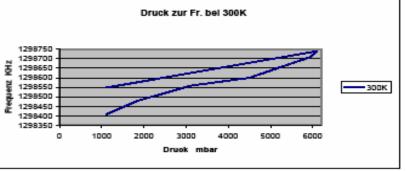

First Warm Test at 290K

- Test procedure:

- Cavity 290K/1000mbar
- Pressure on 2K circuit in steps up to 6,0bar
- Cavity under different pressure conditions
 - 2,0bar okay
 - 3,2bar okay
 - 4,5bar okay
 - 5,9bar okay
 - ~6,0bar increase of pressure and leak rate in the insulation vacuum
- Pressure on 2K circuit down to 1,0bar
- Frequency ~140kHz higher on 1,0bar before pressure test.
- Check of filed flatness at 290K in CHECHIA difficult Gennuadi
- Leak was located
 - 2K supply line from the Level vessel (weld), not at the cavity or He-Vessel.

The European



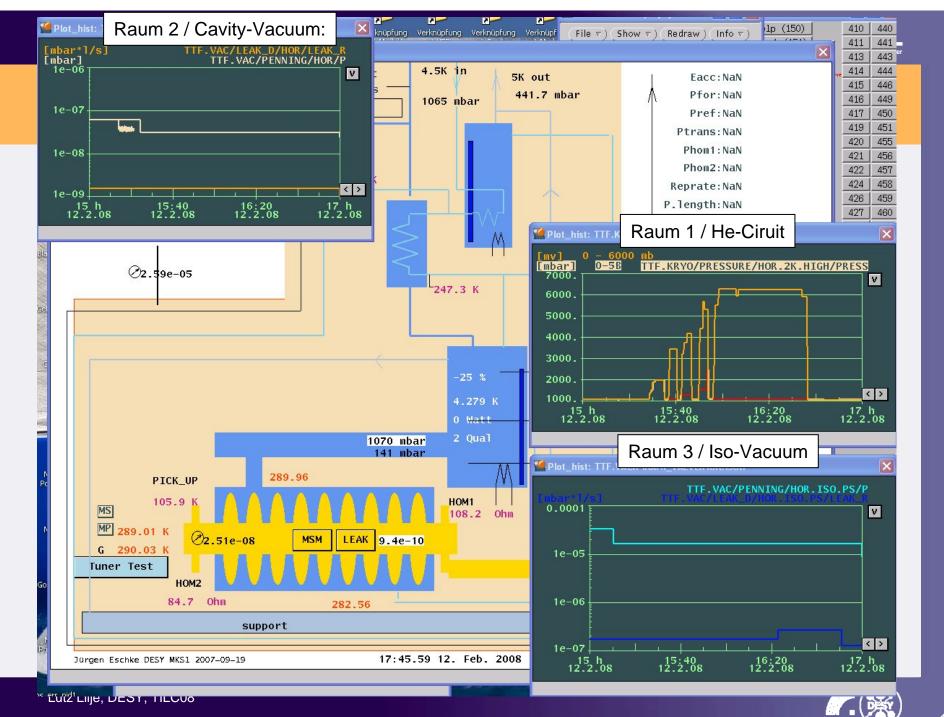

Frequenzverlauf bei Drucktest C26 im H1

Datum:	Uhrzelt	delta mV	Steps	Position	Temp.	Druck	Plezo-Span.	delta Span.	Frequenz	delta Fr.	Feldstärke	Wo
		(HP 54501)			Kelvin	mbar	mV	KHz	GHz	KHz	MV/m	
			0	D	300				1298400			Werkstatt
01.02.2008	15:55		0		5	1160			1300385			Erster Kalttest
01.02.2008	15:33			264000	5	1159			1300019		0	Erster Kalttest
07.02.2008	9:10		0	D	5	1070			1300383		0	Zweiter Kalttest
07.02.2008	10:35		0	D	2	32			1300321		0	Zweiter Kalttest
07.02.2008	11:35		0	D	2	4500			1300550		0	Zweiter Kalttest
07.02.2008	11:55		0	D	2	5200			1300582		0	Zweiter Kalttest
07.02.2008	12:10		0	D	2	6010			1300598		0	Zweiter Kalttest

300K Drucktest

Datum:	Uhrzelt	delta mV	Steps	Position	Temp.	Druck	Plezo-Span.	delta Span.	Frequenz	delta Fr.	Feldstärke	Wo
		(HP 54501)			Kelvin	mbar	mV	KHz	GHz	KHz	MV/m	
08.02.2008	15:20		0	D	300	1109			1298409		0	H1/300K
08.02.2008	15:30		0	D	300	1850			1298479		0	H1/300K
08.02.2008	15:46		0	D	300	3110			1298558		0	H1/300K
08.02.2008	15:49		0	D	300	4500			1298600		0	H1/300K
08.02.2008	15:51		0	D	300	5950			1298710		0	H1/300K
08.02.2008	16:03		0	D	300	6100			1298740		0	H1/300K
08.02.2008	16:09		0	D	300	1100	16.25		1298548		0	H1/300K

Clemens Albrecht


Second Warm Test at 290K

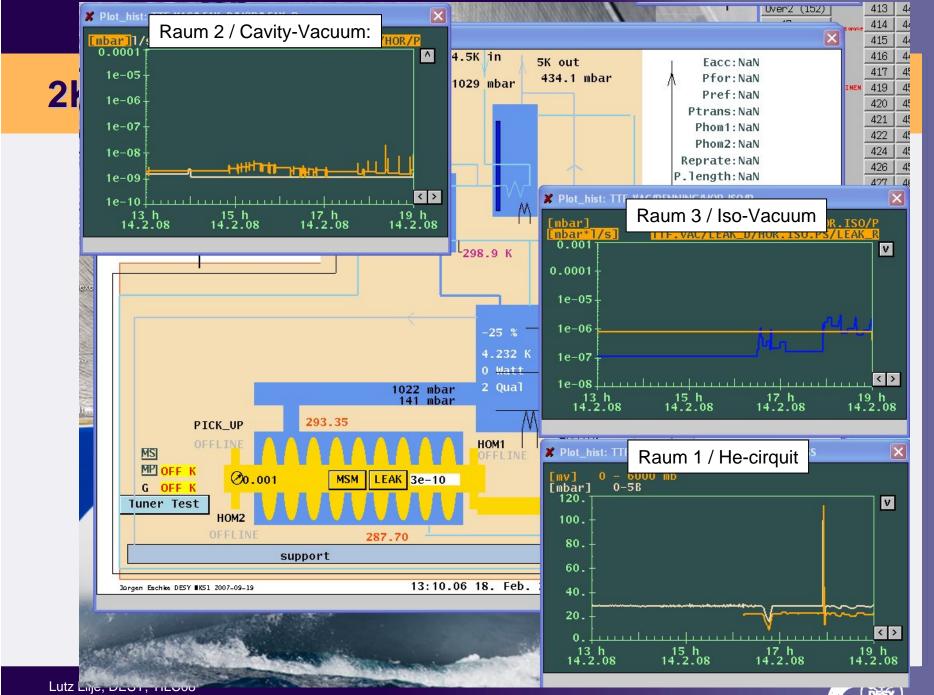
- <u>Test procedure:</u>

C26 ~290K Raum 1: 1,0bar / Frequency measured Raum 2: ~3x10E-8mbar Raum 3: ~1,6x10E-5mbar

- He-Raum (1) in steps to impress with warm He:
 - 2,0 bar / Frequency measured
 - 1,0 bar / fr measured
 - 3,45 bar / fr measured
 - 1,0 bar / fr measured
 - 4,2 bar / fr measured
 - 1,0 bar / fr measured
 - 5,3 bar / fr measured
 - 1,0 bar / fr measured
 - 6,2 bar / fr measured
 - 6,2 bar for a 1/2h / fr measured
 - 1,0 bar / fr measured
- Above 6,2 bar fr ~100kHz higher on 1,0bar before pressure test.
- Up to 5,3bar steps no fr shift vs. 1.0bar measurements.
- None detection of pressure or leak rate increase in the cavity or insulation vacuum

equenzvel	dauf hai D	aktaat (26 i	U1						Th		1 20		
Datum:	Uhrzeit	delta m∨	Steps	Position	Temp.	Druck	Piezo-Span.	delta Span.	Frequenz		delta Fr.	Feldstärke	Wo
Datum.	OIIIZEIL	(HP 54501)	Oteps	1 031000	Kelvin	mbar	mV	KHz	GHz		KHz	MV/m	**0
1.02.2008	09:10	(11 04001)	0		300	1070	111 2	- I SI IL	1298560		T ST 12	101 7 7 111	
									.200000				
1.02.2008	15:10		0		300	1067	l. l.	l. I.	1298560		Ū.	l l	
1.02.2008	15:25		0			1984			1298620	60			
1.02.2008	15:35		0			1058			1298592	-28			
1.02.2008	15:39		0			3521			1298705	113			
1.02.2008	15:41		0			1063			1298605	-100			
1.02.2008	15:45		0			4164	l l	L.	1298740	135	Ĺ	l l	
1.02.2008	15:48		0			1078	<u>[</u>]		1298595	-145	<u>[</u>	<u> </u>	
1.02.2008	15:52		0			5300	l. l.		1298785	190	l	l <u> </u>	
1.02.2008	15:56		0			1057			1298600	-185			
1.02.2008	15:59		0			6240	a		1298875	275		-	
1.02.2008	16:26		0	5		6215	(g) (g)		1298910	35	2		
1.02.2008	16:36		0	2		1062			1298702	-208	2	3	
											-		
		-											
<u>(</u>													
							i i						
			- Í		1		Î.	l.	1				
						26 / 290K 1	000-6200mba	r	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0	
1298950 1298900					Cź	26 / 290K 1	000-6200mba	ır				6 215	
					C2	26 / 290K 1	000-6200mba	ır				• 6215 • 6240	
1298900 1298850					C2	26 / 290K 1	000-6200mba	ır					
1298900 1298850 1298800					C2	26 / 290K 1	000-6200mba	ır					
1298900 1298850 1298800					C2	26 / 290K 1	000-6200mba	r		53(00		
1298900 1298850 1298800		1062			C2	26 / 290K 1	000-6200mba		4	53(00		
1298900 1298850 1298800		1062 •			C2	26 / 290K 1		4164	4	53(00		
1298900 1298850 1298800 1298750						26 / 290K 1	000-6200mba		4	530	00		
1298900 1298850 1298800 1298750 1298700 1298650		1062		198		26 / 290K 1			4	53(00		
1298900 1298850 1298800 1298750 1298700 1298650 1298600	1058 1063	1078 1057		198		26 / 290K 1			4	53(00		
1298900 1298850 1298800 1298750 1298700 1298650	1058 1063			198		26 / 290K 1			4	53(00		
1298900 1298850 1298800 1298750 1298750 1298650 1298650 1298550	1058 1063	1078 1057		198		26 / 290K 1			4	530	00		
1298900 1298850 1298800 1298750 1298700 1298650 1298600	1058 1063	1078 1057 1067						4164				6240	700
1298900 1298850 1298800 1298750 1298750 1298650 1298650 1298550	1058 1063	1078 1057		198		26 / 290K 1	3521			530	00	6240	700
1298900 1298850 1298800 1298750 1298750 1298650 1298650 1298550	1058 1063	1078 1057 1067						4164				6240	700
1298900 1298850 1298800 1298750 1298700 1298600 1298500 1298500	1058 1063	1078 1057 1067 1000					3521	4164				6240	700

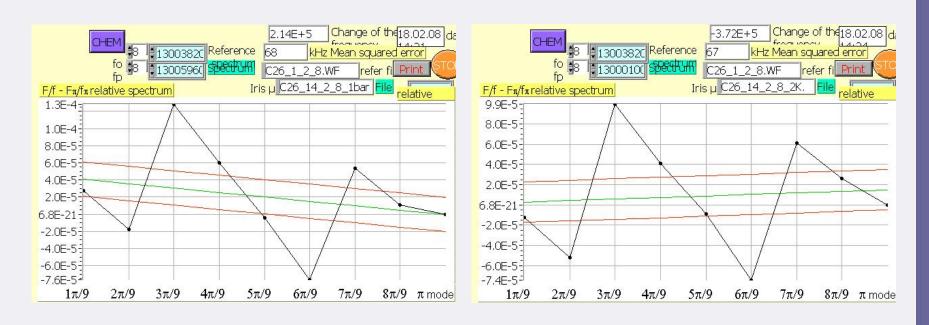
15


Second Cold Test at 2K

- Test procedure:

- Cavity stable at 2K/31mbar fr on-resonance
- Frequency and field flatness checked
- Frequency could be tune.
- Field flatness unbalanced impact from the warm test

The European



Cavity Spectrum at 4 a. 2K

4K

2K

RF on-resonance

Pressure Test: Conclusion and Next Steps

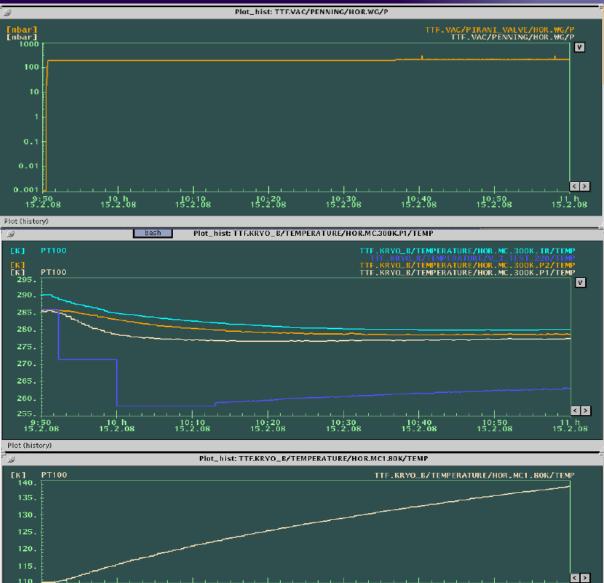
- Pressure Test results
 - At 2K
 - » Until 6.2 bar Cavity and Tuner system only elastic deformations
 - At 295K
 - » Until 5,3bar Cavity and Tunersystem only elastic deformations
 - » Over 5.3bar plastic deformations on the Cavity und Tunersystem
- Next steps:
 - Prepare the Cavity for simple spectrum measurements at 295K
 - Pressure test in the work shop (water)
 - » Measurements at Cavity flanges and the Tunersystem with micrometer to figure out what are the "instable components"
 - » Pressure test with tuner clamps (Pratzen) and disassemble tunersystem
 - » Pressure test for the series will be done with clamps.
 - To retest with a 800°C Cavity under same conditions
 - » C26 is 1400°C treated
 - The goal is to verify if it possible to certified a Cavity/He-Vessel with a simple cheap test at 5.8bar
 - » 4.0bar is the specified max. pressure in XFEL 4.0x1.43=5.72bar

Prüflaboratorium für Druckgeräte Prüfbericht zur Entwurfsprüfung von Druckgeräten / Druckgeräteteilen

TUV NORD

	Prüflabe	or Hamburg							
	Auftrag		790683	Prüfbericht-Nr.:	STK1P09	71702			
	HERST	ELLER / INVERKEH	RBRINGER	EINSTUFUNG					
	Deutsch	es Elektronen-Synci	hrotron	Prüfgrundlage	97/23/EG	(PED, DGRL)			
	Notkestr			Regelwerk	EN 13445				
	22607 H			Kategorie IV Mo					
	Tel.: +	+49(0)40/8998-0, Fa	ax: -3282	Art des Druckgerät	es unpereuer	tes Druckgerät			
	TECHNI	SCHE DATEN							
	Prüfgege	enstand: XFEL-Ca	Herstell-N	r. unbekannt					
	Hauptze	ichnung: 1_06_831	Baujahr	ab 2008					
	Druckra	um		Cavities / He-Ta	ink Raum II	Raum III			
	Min./ma	x. zulässiger Druck	PS [bar]	-1 / 3,0	0/0	0/0			
	Min./ma:	x. zul. Temperatur	IS [°C]	-271750	0/0	0/0			
	Volumer	1	V [L]	Unbekannt	0	0			
,43 = 5,72 bar (5,8)	Fluid		-	Helium	-	-			
43 = 3,72 bar $(3,0)$	Prüfdruc	k (erstmalig)	PT [bar]	5,8	0,0	0,0			
	Medium	(Gasdruckprüfung)	-	Lutt	-	-			
	Schweiß	nahtwertigkeit	%	85	0	0			
	Fluidgru	рре		2	0	0			
	Korrosio	nszuschlag	[mm]	0	0	0			
		ERGEBNIS:							
	Die Pr			einstimmung mit den Anforderungen der Richtlinie 97/23/EG üfgrundlagen und ergab keine Beanstandungen.					
	Hinweis	und nur auf die d	ruckbeanspruc	h ausschließlich auf d hten Bauteile. Eine a eigabe des Prüflabora	auszugsweise Ver	vielfältigung des			
		Die in der Anlage genannten Prüfvermerke sind zu beachten.							
	Ort:	Ort: Hamburg Datum: 29.01.2008 Prüflaboratorium für Druckgeräte der TÜV NORD Sveteme GmbH & Co. KG							
Dreft \/ereicr				All Real Provide All	Entw				
Draft Version				0045		/uli -			
		Systems, STK Tel.	+49-(0)40/8557	-2870 VORD 9	Dipl. Ing. U.	Klinger			
	Große Bai D-22525 H	hnstraße 31 Fax Hamburg e-mail	+49-(0)40/8557 uklinger@tuev-		Benannte Stelle, Ker	nummer 0045			

4 x


Venting of the Coupler Vacuum

- Preparation for crash tests
 - would like to escalate the desaster level in a reasonable way to maximise information from test
 - » Correct scheduling of tests is important
 - In other words: At which stage are we seriously start destroying things?
- Check whether ceramic breaks in a fast vent with nitrogen
- Results
 - Ceramic does not break
 - No leak occured
 - » Cross-checked after pumpdown

Venting of Coupler Vacuum

- Opening needle valve
- about 1 min for full vent
- Nitrogen, not air
- Gauge calibrated for air
- Results:
- Ceramic does not break
- No leak

10:10

10:20

10^h 15.2.08

9:50 15.2.08 Plot (history) The European

X-Ray Laser Project

10:40

10:30

11 h 15.2.08

10:50

Summary and Outlook

- Pressure test
 - No detuning of the cavity in cold
 - Development of a simple pressure test for the series

The European

- » Warm condition up to ~6 bar
- Venting test
 - Ceramic did not break, no leak
- Module crash test
 - Safety authorities will take part
 - Series of test with careful escalation of level of destruction
 - » Starting this week

